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Definition

A procedure to find pairs of records in two
files that represent the same entity
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Definition

A procedure to find pairs of records in two
files that represent the same entity

When both files are the same file, the
procedure is to find duplicate records

Record Linkage: Theory and Practice – p. 3/134



Terminology

Matched records: both records represent the
same entity in truth
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Terminology

Matched records: both records represent the
same entity in truth

Linked records: Both records are identified
by record linkage procedure as probably
representing the same entity
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Uses

Updating and deduplicating a survey frame
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Uses

Updating and deduplicating a survey frame

Merging two files for microdata anlysis

Determine confidentiality of microdata

Measure a population by capture-recapture
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Capture-Recapture

Let A,B be independent random samples of
sample space S

x11 = |A ∩ B| x10 = |A \ B|

x01 = |B \ A| x00 = |S \ (A ∪ B)|
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Capture-Recapture

Let A,B be independent random samples of
sample space S

x11 = |A ∩ B| x10 = |A \ B|

x01 = |B \ A| x00 = |S \ (A ∪ B)|

Then
x̂00 = E [x00] =

x1+x+1

x11

Record Linkage: Theory and Practice – p. 6/134



Capture-Recapture, Cont.

Take two independent surveys of a region
and estimate the number of people missed.
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Capture-Recapture, Cont.

Take two independent surveys of a region
and estimate the number of people missed.

Note accuracy of estimate depends on
accuracy of x11, as determined by record
linkage

Y.M.M. Bishop,S.E. Fienberg, P.W. Holland,
Discrete Multivariate Analysis, Theory and
Priactice, Chapter 6. MIT Press, 1975
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Context

Deterministic Record Linkage

Probabilistic Record Linkage

Not Statistical Matching

Need for Automated Record Linkage
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Context

Files have records of fixed length with fields
of fixed length and position (or in a database
with retrievable individual fields)
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Context

Files have records of fixed length with fields
of fixed length and position (or in a database
with retrievable individual fields)

Not a search algorithm
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Deterministic Record Linkage

Records are linked when
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Deterministic Record Linkage

Records are linked when
They agree exactly on all matching fields
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Deterministic Record Linkage

Records are linked when
They agree exactly on all matching fields
Or on predetermined portion of fields
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Probabilistic Record Linkage

Assign a probabilistic weighting to record
pairs
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Probabilistic Record Linkage

Assign a probabilistic weighting to record
pairs

Accepts record pairs with sufficiently high
weights as linked pairs
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Not Statistical Matching

Statistical matching: Bring together pairs of
records with statistically similar
characteristics, not necessarily representing
the same entity
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Not Statistical Matching

Statistical matching: Bring together pairs of
records with statistically similar
characteristics, not necessarily representing
the same entity

Usually for two files that represent different
samples of a population

Record Linkage: Theory and Practice – p. 12/134



Not Statistical Matching

Statistical matching: Bring together pairs of
records with statistically similar
characteristics, not necessarily representing
the same entity

Usually for two files that represent different
samples of a population

Older practice than exact matching
(deterministic or probabilistic)
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Need for Automated Record Linkage

Clerical matching is:
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Need for Automated Record Linkage

Clerical matching is:

expensive

slow

error prone

Clerical 1988 1990

Computer match proportion 0% 70% 75%

# clerks 3000 600 200

#months 6 1.5 1.5

False match rate 5% 0.5% 0.2%
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Rec. Link. Theory: Fellegi & Sunter

Basic Definitions and Notation
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Agreement Patterns

Comparison space

α (A) × β (B) → Γ
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Comparison space

α (A) × β (B) → Γ

Comparison vector

γ ∈ Γ

Each component of comparison vector can take on
finitely many values, typically two
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Agreement Patterns

Comparison space

α (A) × β (B) → Γ

Comparison vector

γ ∈ Γ

Each component of comparison vector can take on
finitely many values, typically two

γ = (γ1, γ2, . . . , γn)

γi ∈ {0, 1}

Record Linkage: Theory and Practice – p. 17/134



Example Comparison Space

Consider 3 binary comparisons
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Example Comparison Space

Consider 3 binary comparisons
γ1 pair agrees on last name
γ2 pair agrees on first name
γ3 pair agrees on street name

Sample agreement pattern

γ = (1, 0, 1)
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Conditional Probabilities

Probability that a record pair has agreement
pattern γ, given that it is a match/nonmatch

Pr (γ|M)

Pr (γ|U)

Record Linkage: Theory and Practice – p. 19/134



Conditional Probabilities

Probability that a record pair has agreement
pattern γ, given that it is a match/nonmatch

Pr (γ|M)

Pr (γ|U)

Agreement ratio

R (γ) =
Pr (γ|M)

Pr (γ|U)
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Conditional Probabilities

Probability that a record pair has agreement
pattern γ, given that it is a match/nonmatch

Pr (γ|M)

Pr (γ|U)

Agreement ratio

R (γ) =
Pr (γ|M)

Pr (γ|U)

Conditioned on the unobservable truth
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Linkage Rule

Designate a record pair’s status based on its
agreement pattern
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Linkage Rule

Designate a record pair’s status based on its
agreement pattern

Link
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Linkage Rule

Designate a record pair’s status based on its
agreement pattern

Link

Non-link
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Link
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Linkage Rule

Designate a record pair’s status based on its
agreement pattern

Link

Non-link

Undecided

L : Γ → {L,N,C}
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Error Rates

False match–a linked pair that is not a match
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Error Rates
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False match rate–probability that a designated link is a
nonmatch

µ = Pr (L|U)
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Error Rates

False match–a linked pair that is not a match

False nonmatch–a nonlinked pair that is a match

False match rate–probability that a designated link is a
nonmatch

µ = Pr (L|U)

False nonmatch rate–probability that a designated
nonlink is a match
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Error Rates

False match–a linked pair that is not a match

False nonmatch–a nonlinked pair that is a match

False match rate–probability that a designated link is a
nonmatch

µ = Pr (L|U)

False nonmatch rate–probability that a designated
nonlink is a match

λ = Pr (N |M)
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Error Rates, Cont.

If all pairs of records are designated link or
nonlink
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Error Rates, Cont.

If all pairs of records are designated link or
nonlink

Match Nonmatch
Link 1 − λ µ = Pr (L|U)

Nonlink λ = Pr (N |M) 1 − µ
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Clerical Region

The set C of record pairs which are
designated neither probable link nor probable
nonlink by the linkage rule

Record Linkage: Theory and Practice – p. 23/134



Clerical Region

The set C of record pairs which are
designated neither probable link nor probable
nonlink by the linkage rule

The match status of these pairs is left to
clerical review
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Fundamental Theorem

Fellegi & Sunter (“A Theory for Record
Linkage”, JASA, December,1969)
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Fundamental Theorem

Fellegi & Sunter (“A Theory for Record
Linkage”, JASA, December,1969)

Order the comparison vectors
{

γj
}

by their
agreement ratios R

(

γj
)
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Fundamental Theorem

Fellegi & Sunter (“A Theory for Record
Linkage”, JASA, December,1969)

Order the comparison vectors
{

γj
}

by their
agreement ratios R

(

γj
)

Choose upper Tµ and lower Tλ cutoff values
for R (γ)
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Fundamental Theorem, Cont.

Linkage rule:
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Fundamental Theorem, Cont.

Linkage rule:

Pairs with R
(

γj
)

≥ Tµ are designated links
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Pairs with R
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γj
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≥ Tµ are designated links
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(
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Fundamental Theorem, Cont.

Linkage rule:

Pairs with R
(

γj
)

≥ Tµ are designated links

Pairs with R
(

γj
)

≤ Tλ are designated
nonlinks

Pairs with Tλ < R
(

γj
)

< Tµ are in the clerical
region

Record Linkage: Theory and Practice – p. 25/134



Fundamental Theorem, Cont.

The error rates for this linkage rule are
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Fundamental Theorem, Cont.

The error rates for this linkage rule are

µ =
∑

R(γj)≥Tµ

Pr
(

γj|U
)
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Fundamental Theorem, Cont.

The error rates for this linkage rule are

µ =
∑

R(γj)≥Tµ

Pr
(

γj|U
)

λ =
∑

R(γj)≤Tλ

Pr
(

γj|M
)
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Fundamental Theorem, Cont.

Theorem: For these error rates µ, λ, this is
the optimal linkage rule, in the sense of
producing the minimum size critical region
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Fundamental Theorem, Cont.

Theorem: For these error rates µ, λ, this is
the optimal linkage rule, in the sense of
producing the minimum size critical region

In other words, for a given error bound
tolerance, this rule make as many linkage
decisions as possible
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Weight Distribution for Matches

weight
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Weight Distribution for Matches

weightw0

Pr (w (γ) > w0 |M)
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Weight Distribution for Non-Matches

weight
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Weight Distribution for Non-Matches

weightw0

Pr (w (γ) < w0 |U)
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Idealized Distributions

weight
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Idealized Distributions

weightTλ Tµ
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Idealized Distributions

weightTλ Tµ

LinksClericalNon-Links
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Error Rates, Clerical Review Region

weight
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Error Rates, Clerical Review Region

weightTλ Tµ
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Error Rates, Clerical Review Region

weightTλ Tµ

µ = Pr (w (γ) > Tµ |U)λ = Pr (w (γ) < Tλ |M)
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Conditional Independence Assumption

To facilitate computation of conditional probabilities,
Fellegi & Sunter assume conditional independence of
comparison vector components
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Conditional Independence Assumption

To facilitate computation of conditional probabilities,
Fellegi & Sunter assume conditional independence of
comparison vector components

For γ = (γ1, γ2, . . . , γn), assume

Pr (γ|M) =
n
∏

i=1

Pr (γi|M)

Pr (γ|U) =

n
∏

i=1

Pr (γi|U)
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Cond. Indep. Assumption, Cont.

The factors Pr (γi|M) ,Pr (γi|U) are called
marginal probabilities
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Cond. Indep. Assumption, Cont.

The factors Pr (γi|M) ,Pr (γi|U) are called
marginal probabilities

The ratio
Pr (γi|M)

Pr (γi|U)

determines the distinguishing power of the
comparison γi
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Cond. Indep. Assumption, Cont.

Under conditional independence assumption, it is
convenient to compute the weight of the
comparison vector
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Cond. Indep. Assumption, Cont.

Under conditional independence assumption, it is
convenient to compute the weight of the
comparison vector

w (γ) = log R (γ)

=
n
∑

i=1

log Pr (γi|M)

log Pr (γi|U)

=
n
∑

i=1

w (γi)
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Motivation: Reduce the number of parameters
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Cond. Indep. Assumption, Cont.

Motivation: Reduce the number of parameters

For n binary comparisons and two conditional classes
M,U , there are 2n+1 parameters

2n comparison vectors

2 conditional probabilities for each vector

Under conditional independence assumption, there are
2n parameters

Rationale: Given M , errors producing disagreement
should be random
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Cond. Indep. Assumption, Cont.

Often computable in closed form
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Can produce good decision rules even if
model inaccurate
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Cond. Indep. Assumption, Cont.

Often computable in closed form

Can produce good decision rules even if
model inaccurate

Refered to as naive Bayes in machine
learning
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Conditional Independence Example

Suppose

Pr (γ1 = 1|M) = 0.9

Pr (γ2 = 1|M) = 0.8

Pr (γ3 = 1|M) = 0.7
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Conditional Independence Example

Suppose

Pr (γ1 = 1|M) = 0.9

Pr (γ2 = 1|M) = 0.8

Pr (γ3 = 1|M) = 0.7

Then for γ = (1, 0, 1),

Pr (γ|M) = 0.9 ∗ 0.2 ∗ 0.7 = 0.126
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Conditional Independence Example

Suppose

Pr (γ1|M) = 0.8 Pr (γ1|U) = 0.1

Pr (γ2|M) = 0.9 Pr (γ2|U) = 0.3
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Conditional Independence Example

Suppose

Pr (γ1|M) = 0.8 Pr (γ1|U) = 0.1

Pr (γ2|M) = 0.9 Pr (γ2|U) = 0.3

Then

Pr (γ1|M)

Pr (γ1|U)
= 8.0

Pr (γ2|M)

Pr (γ2|U)
= 3.0
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Fellegi-Sunter Summary

Choose conditional probability parameters
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Fellegi-Sunter Summary

Choose conditional probability parameters

Conduct field comparisons on record pairs
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Fellegi-Sunter Summary

Choose conditional probability parameters

Conduct field comparisons on record pairs

Classify record pairs based on weight of
comparison vector
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Record Linkage Methodology

Parameter estimation

Record Linkage: Theory and Practice – p. 40/134



Record Linkage Methodology

Parameter estimation
EM Algorithm
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Record Linkage Methodology

Parameter estimation
EM Algorithm

Blocking
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Choosing Parameters

Informal
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Choosing Parameters

Informal

EM Algorithm
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Choosing Parameters

Informal

EM Algorithm

Other Methods
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Informal Methods

Guess
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Informal Methods
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0 < Pr (γ|U) < Pr (γ|M) < 1
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Informal Methods
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Approximate
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Informal Methods

Guess

0 < Pr (γ|U) < Pr (γ|M) < 1

Approximate

Pr (γ|U) ≈ Pr (γ|S)

Iterate

Perform matching with current parameters

Review results

Adjust parameters based on observation
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EM Algorithm

Dempster, Laird, Rubin. “Maximum likelihood
from incomplete data via the EM algorithm”.
Journal of the Royal Statistical Society.
SeriesB. 39. pp. 1–39. 1977.

Record Linkage: Theory and Practice – p. 43/134



EM Algorithm

Dempster, Laird, Rubin. “Maximum likelihood
from incomplete data via the EM algorithm”.
Journal of the Royal Statistical Society.
SeriesB. 39. pp. 1–39. 1977.

McLachlan, Krishnan. The EM Algorithm and
Extensions. Wiley-Interscience. 2nd Ed. 2007.
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EM Algorithm

Dempster, Laird, Rubin. “Maximum likelihood
from incomplete data via the EM algorithm”.
Journal of the Royal Statistical Society.
SeriesB. 39. pp. 1–39. 1977.

McLachlan, Krishnan. The EM Algorithm and
Extensions. Wiley-Interscience. 2nd Ed. 2007.

Maximum likelihood method
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EM Algorithm

Dempster, Laird, Rubin. “Maximum likelihood
from incomplete data via the EM algorithm”.
Journal of the Royal Statistical Society.
SeriesB. 39. pp. 1–39. 1977.

McLachlan, Krishnan. The EM Algorithm and
Extensions. Wiley-Interscience. 2nd Ed. 2007.

Maximum likelihood method

Latent class
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EM Algorithm

Dempster, Laird, Rubin. “Maximum likelihood
from incomplete data via the EM algorithm”.
Journal of the Royal Statistical Society.
SeriesB. 39. pp. 1–39. 1977.

McLachlan, Krishnan. The EM Algorithm and
Extensions. Wiley-Interscience. 2nd Ed. 2007.

Maximum likelihood method

Latent class

Mixture model
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Likelihood Function

L =
∏

(a,b)∈S

Pr (γ (a, b))

=
∏

j

(

Pr
(

γj|M
)

Pr (M) + Pr
(

γj|U
)

Pr (U)
)nj
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Likelihood Function

L =
∏

(a,b)∈S

Pr (γ (a, b))

=
∏

j

(

Pr
(

γj|M
)

Pr (M) + Pr
(

γj|U
)

Pr (U)
)nj

nj =
∣

∣

{

(a, b) ∈ S | γ (a, b) = γj
}∣

∣
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Complete-data Likelihood Function

Consider

χj =







1 if (a, b)j ∈ M

0 if (a, b)j ∈ U

Xj =
∑

γ(a,b)=γj

χj (a, b)
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Complete-data Likelihood Function

Consider

χj =







1 if (a, b)j ∈ M

0 if (a, b)j ∈ U

Xj =
∑

γ(a,b)=γj

χj (a, b)

Then

L =
∏

j

(

(

Pr
(

γj|M
)

Pr (M)
)Xj

(

Pr
(

γj|U
)

Pr (U)
)1−Xj

)nj
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Expectation Step

Given current estimates of conditional
probabilities and Pr (M) ,Pr (U), compute
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Expectation Step

Given current estimates of conditional
probabilities and Pr (M) ,Pr (U), compute

E
(

X
j
)

= Pr
(

M |γj
)

=
Pr
(

γj|M
)

Pr (M)

Pr (γj|M) Pr (M) + Pr (γj|U) Pr (U)

= X̂j
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Maximization Step

Given unobserved data estimates X̂j,
compute probabilities Pr

(

γj|M
)

, Pr
(

γj|U
)

,
Pr (M), Pr (U) maximizing
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Maximization Step

Given unobserved data estimates X̂j,
compute probabilities Pr

(

γj|M
)

, Pr
(

γj|U
)

,
Pr (M), Pr (U) maximizing

log L =
∑

j

nj

(

X̂j
(

log Pr
(

γj|M
)

+ log Pr (M)
)

+
(

1 − X̂j
)

(

log Pr
(

γj|U
)

+ log Pr (U)
)

)
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Max Step, Cont.

Under conditional independence
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Max Step, Cont.

Under conditional independence

log L =

∑

j

nj

(

∑

i

X̂j
(

log Pr
(

γ
j
i |M

)

+ log Pr (M)
)

+
(

1 − X̂j
)

(

∑

i

log Pr
(

γ
j
i |U
)

+ log Pr (U)

))
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Max Step, Cont.

For
n =

∑

j

nj

estimate

Pr (M) =
1

n

∑

j

njX̄
j
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Max Step, Cont.

Let

k
j
i =

{

1 if γ
j
i = 1

0 if γ
j
i = 0
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Max Step, Cont.

Let

k
j
i =

{

1 if γ
j
i = 1

0 if γ
j
i = 0

and estimate

Pr (γi|M) =
1

n

∑

j

njX̄
jk

j
i
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EM Algorithm

1. Initialize with probability values

Record Linkage: Theory and Practice – p. 51/134



EM Algorithm

1. Initialize with probability values

2. Iterate
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EM Algorithm

1. Initialize with probability values

2. Iterate
(a) Expectation Step
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EM Algorithm

1. Initialize with probability values

2. Iterate
(a) Expectation Step
(b) Maximization Step
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EM Algorithm

1. Initialize with probability values

2. Iterate
(a) Expectation Step
(b) Maximization Step

3. Until convergence of likelihood function
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EM Algorithm Remarks

Each EM iteration increases likelihood, so
algorithm converges to a (local) maximum
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EM Algorithm Remarks

Each EM iteration increases likelihood, so
algorithm converges to a (local) maximum

For this conditional independence model,
convergence is efficient and generally
insensitive to initial data
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EM Algorithm Remarks

Each EM iteration increases likelihood, so
algorithm converges to a (local) maximum

For this conditional independence model,
convergence is efficient and generally
insensitive to initial data

For latent class to be numerically detected, it
must be represented by about 5% of the total
record pair data

Record Linkage: Theory and Practice – p. 52/134



EM Algorithm Remarks

Each EM iteration increases likelihood, so
algorithm converges to a (local) maximum

For this conditional independence model,
convergence is efficient and generally
insensitive to initial data

For latent class to be numerically detected, it
must be represented by about 5% of the total
record pair data

Check: Do Pr (M) ,Pr (U) seem reasonable?
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EM Remarks, Cont.

If Pr (M) ,Pr (U) are off, everything is off
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EM Remarks, Cont.

If Pr (M) ,Pr (U) are off, everything is off

We can extend problem to comparisons
taking on more that 2 values
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EM Remarks, Cont.

If Pr (M) ,Pr (U) are off, everything is off

We can extend problem to comparisons
taking on more that 2 values

Creates more pattern types and probability
parameters
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EM Remarks, Cont.

If Pr (M) ,Pr (U) are off, everything is off

We can extend problem to comparisons
taking on more that 2 values

Creates more pattern types and probability
parameters

Can extend algorithm to more that 2 classes
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EM Remarks, Cont.

If Pr (M) ,Pr (U) are off, everything is off

We can extend problem to comparisons
taking on more that 2 values

Creates more pattern types and probability
parameters

Can extend algorithm to more that 2 classes
Increases number of parameters to be
estimated
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Blocking

If set A contains m records and set B
contains n records then A × B contains mn
record pairs
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Blocking

If set A contains m records and set B
contains n records then A × B contains mn
record pairs

It is computationally inefficient to compare all
record pairs
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Blocking

If set A contains m records and set B
contains n records then A × B contains mn
record pairs

It is computationally inefficient to compare all
record pairs

In practice, just bring together record pairs
that agree on some chosen features (blocking
criterion)
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Blocking

If set A contains m records and set B
contains n records then A × B contains mn
record pairs

It is computationally inefficient to compare all
record pairs

In practice, just bring together record pairs
that agree on some chosen features (blocking
criterion)

Generally repeat record linkage procedure for
several different blocking criteria
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Blocking Criteria

Geographic codes
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Blocking Criteria

Geographic codes

Postal or phone codes
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Blocking Criteria

Geographic codes

Postal or phone codes

Name prefix
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Blocking Criteria

Geographic codes

Postal or phone codes

Name prefix

Phonetic name codes
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Blocking Criteria

Geographic codes

Postal or phone codes

Name prefix

Phonetic name codes
Soundex

Record Linkage: Theory and Practice – p. 55/134



Blocking Criteria

Geographic codes

Postal or phone codes

Name prefix

Phonetic name codes
Soundex
NYSIIS
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Blocking Criteria

Geographic codes

Postal or phone codes

Name prefix

Phonetic name codes
Soundex
NYSIIS

Combinations
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Record Linkage Refinements

String comparator
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Record Linkage Refinements

String comparator

Third latent class
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Record Linkage Refinements

String comparator

Third latent class

Third comparison value
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Record Linkage Refinements

String comparator

Third latent class

Third comparison value

One-to-one matching
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String Comparator

For some comparisons (e.g. categorical
variables), it is sufficient to assign
agree/disagree
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String Comparator

For some comparisons (e.g. categorical
variables), it is sufficient to assign
agree/disagree

For string variables (e.g. first names, last
names, street names) this is probably too
restrictive
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String Comparator

For some comparisons (e.g. categorical
variables), it is sufficient to assign
agree/disagree

For string variables (e.g. first names, last
names, street names) this is probably too
restrictive

A string comparator allows us to assign
comparison values between full agreement
and full disagreement
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String Comparator Context

Binary comparison γ ∈ {0, 1}
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String Comparator Context

Binary comparison γ ∈ {0, 1}

Weight assignment

aw = log
Pr (γ = 1|M)

Pr (γ = 1|U)

dw = log
Pr (γ = 0|M)

Pr (γ = 0|U)

dw < 0 < aw
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String Comparator Context, Cont.

For alphabet Σ, our string comparator is a
similarity function

γ : Σ∗ × Σ∗ → [0, 1]

γ (α, β) = 1 if α = β
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String Comparator Context, Cont.

For alphabet Σ, our string comparator is a
similarity function

γ : Σ∗ × Σ∗ → [0, 1]

γ (α, β) = 1 if α = β

Weight assignment function w is an
increasing interpolation function

w : [0, 1] → [dw, aw]

w (1) = aw
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Some String Comparator Types

Bigram, n-gram
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Some String Comparator Types

Bigram, n-gram

Jaro-Winkler
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Some String Comparator Types

Bigram, n-gram

Jaro-Winkler

Edit distance
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Bigrams

Decompose string into a set of 2-character
(contiguous) substrings

alphabet → {al, lp, ph, ha, ab, be, et}
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Bigrams

Decompose string into a set of 2-character
(contiguous) substrings

alphabet → {al, lp, ph, ha, ab, be, et}

For alphabet of s = |Σ| characters, record
bigram counts in a vector of dimension s2
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Bigrams, Cont.

Two strings can be compared by computing
the “angle” between their bigram vectors a, b

cos θ =
a · b

|a| |b|

Record Linkage: Theory and Practice – p. 62/134



Bigrams, Cont.

Two strings can be compared by computing
the “angle” between their bigram vectors a, b

cos θ =
a · b

|a| |b|

Obvious generalization to n-grams
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Bigrams, Cont.

Two strings can be compared by computing
the “angle” between their bigram vectors a, b

cos θ =
a · b

|a| |b|

Obvious generalization to n-grams

Vector for n-gram is in sn dimensional space
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Bigrams, Cont.

Computation algorithm is fast (linear)
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Bigrams, Cont.

Computation algorithm is fast (linear)

Don’t work very well for record linkage
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Bigrams, Cont.

Computation algorithm is fast (linear)

Don’t work very well for record linkage
Ignores order of bigram occurrence

abcba ≈ bcbab
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Bigrams, Cont.

Computation algorithm is fast (linear)

Don’t work very well for record linkage
Ignores order of bigram occurrence

abcba ≈ bcbab

Works better for small alphabet, long
strings than vice versa
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Jaro-Winkler Comparator

In the following, let
α = (a1, a2, . . . am) , β = (b1, b2, . . . , bn) be
strings of lengths m,n respectively with
m ≤ n
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Jaro-Winkler Comparator

In the following, let
α = (a1, a2, . . . am) , β = (b1, b2, . . . , bn) be
strings of lengths m,n respectively with m ≤ n

Comparator value depends on number of
common characters and character
“transpositions”
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Jaro-Winkler Comparator, Cont.

Strings α, β have common characters ai, bj iff

ai = bj

|i − j| <
⌊n

2

⌋
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Jaro-Winkler Comparator, Cont.

Strings α, β have common characters ai, bj iff

ai = bj

|i − j| <
⌊n

2

⌋

The number of transpositions is computed as
the greatest integer of half of the number of
out-of-order common character pairs
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Jaro-Winkler Comparator, Cont.

For string pair with c common characters and
t transpositions, basis similarity score is

x =
1

3

(

c

m
+

c

n
+

c − t

c

)
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Jaro-Winkler Example

Consider the strings (b,a,r,n,e,s) and (a,n,d,e,r,s,o,n)
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Jaro-Winkler Example

Consider the strings (b,a,r,n,e,s) and (a,n,d,e,r,s,o,n)

Search range d

n = 8

d =

⌊

8

2

⌋

− 1 = 3
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Jaro-Winkler Example

Consider the strings (b,a,r,n,e,s) and (a,n,d,e,r,s,o,n)

Search range d

n = 8

d =

⌊

8

2

⌋

− 1 = 3

Common characters

(a, r, n, e, s)

(a, n, e, r, s)
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Jaro-Winkler Example, Cont.

Five common characters with 3 out of order,
so c = 5, t = 1
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Jaro-Winkler Example, Cont.

Five common characters with 3 out of order,
so c = 5, t = 1

Score

x =
1

3

(

5

6
+

5

8
+

4

5

)

=
271

360
.
= 0.75280
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Jaro-Winkler Variations

Similar characters
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Jaro-Winkler Variations

Similar characters

Prefix adjustment
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Jaro-Winkler Variations

Similar characters

Prefix adjustment

Long suffix adjustment
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Similar Characters

Attempt to compensate for common
misspellings or typos
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Similar Characters

Attempt to compensate for common
misspellings or typos

List of 36 pairs of characters deemed similar
(e.g. most vowell pairs)
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Similar Characters

Attempt to compensate for common
misspellings or typos

List of 36 pairs of characters deemed similar
(e.g. most vowell pairs)

After common characters designated,
remaining characters checked for similar pairs

Record Linkage: Theory and Practice – p. 70/134



Similar Characters

Attempt to compensate for common
misspellings or typos

List of 36 pairs of characters deemed similar
(e.g. most vowell pairs)

After common characters designated,
remaining characters checked for similar pairs

Each similar pair is scored as 0.3 of a
common pair
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Similar Characters, Cont.

Revised character count

cs = c + 0.3s
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Similar Characters, Cont.

Revised character count

cs = c + 0.3s

Adjusted comparator score

xs =
1

3

(

cs

m
+

cs

n
+

c − t

c

)
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Similar Characters, Cont.

For example. abc and ebc have 2 common
characters and the remaining pair (a,e) are
similar, so

xs =
1

3

(

2

3
+

2

3
+ 1

)

+
1

3

(

0.3

3
+

0.3

3

)

=
7

9
+

1

15

=
38

45
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Common Prefix

Spelling mistakes tend to occur later in the
string (Winkler)
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Common Prefix

Spelling mistakes tend to occur later in the
string (Winkler)

Check for common prefix of up to 4
characters
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Common Prefix

Spelling mistakes tend to occur later in the
string (Winkler)

Check for common prefix of up to 4
characters

If length of common prefix is p, adjust score x
by

xp = x +
p (1 − x)

10
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Long String Adjustment

Adjust score for longer strings with several
common characters beyond common prefix
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Long String Adjustment

Adjust score for longer strings with several
common characters beyond common prefix

Conditions for using the adjustment
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Long String Adjustment

Adjust score for longer strings with several
common characters beyond common prefix

Conditions for using the adjustment
1. m ≥ 5
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Long String Adjustment

Adjust score for longer strings with several
common characters beyond common prefix

Conditions for using the adjustment
1. m ≥ 5

2. c − p ≥ 2
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Long String Adjustment

Adjust score for longer strings with several
common characters beyond common prefix

Conditions for using the adjustment
1. m ≥ 5

2. c − p ≥ 2

3. c − p ≥ m−p
2
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Long String Adjustment, Cont.

That is,

Record Linkage: Theory and Practice – p. 75/134



Long String Adjustment, Cont.

That is,
1. Both strings are at least 5 characters long
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Long String Adjustment, Cont.

That is,
1. Both strings are at least 5 characters long
2. There are at least two common characters

besides the agreeing prefix characters
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Long String Adjustment, Cont.

That is,
1. Both strings are at least 5 characters long
2. There are at least two common characters

besides the agreeing prefix characters
3. We want the strings outside the common

prefixes to be fairly rich in common
characters, so that the remaining common
characters are at least half of the remaining
common characters of the shorter string
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Long String Adjustment, Cont.

If conditions met, then adjust score by

xl = x + (1 − x)
c − (p + 1)

m + n − 2 (p − 1)

Record Linkage: Theory and Practice – p. 76/134



Long String Adjustment, Cont.

In barnes, anderson example, conditions are
met, so the adjusted score is

xl =
271

360
+

(

1 −
271

360

)

5 − 1

6 + 8 + 2

=
391

480
.
= 0.8146
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Jaro-Winkler Comparator

Slower algorithm (quadratic)
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Jaro-Winkler Comparator

Slower algorithm (quadratic)

Performs very well in tests
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Edit Distance String Comparators

The minimum number of edits required to
convert sting α to string β, lengths m ≤ n
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Edit Distance String Comparators

The minimum number of edits required to
convert sting α to string β, lengths m ≤ n

Insert
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Edit Distance String Comparators

The minimum number of edits required to
convert sting α to string β, lengths m ≤ n

Insert
Delete
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Edit Distance String Comparators

The minimum number of edits required to
convert sting α to string β, lengths m ≤ n

Insert
Delete
Substitute
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Edit Distance String Comparators

The minimum number of edits required to
convert sting α to string β, lengths m ≤ n

Insert
Delete
Substitute

Dynamic programming algorithm, quadratic
complexity O (mn)
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Edit Distance Algorithm

For αi prefix of α of length i, βj prefix of β of
length j
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Edit Distance Algorithm

For αi prefix of α of length i, βj prefix of β of
length j

Initialize

e (αi, ε) = i

e (ε, βj) = j

e (ε, ε) = 0
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Edit Distance Algorithm, Cont.

Compute

e (αi, βj) = min























e (αi−1, βj) + 1

e (αi, βj−1) + 1
{

e (αi−1, βj−1) if ai = bj

e (αi−1, βj−1) + 1 if ai 6= bj
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Edit Distance Algorithm, Cont.

Compute

e (αi, βj) = min























e (αi−1, βj) + 1

e (αi, βj−1) + 1
{

e (αi−1, βj−1) if ai = bj

e (αi−1, βj−1) + 1 if ai 6= bj

Distance

e = e (α, β) = e (αm, βn)
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Edit Distance Similarity Function

Edit distance is a metric
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Edit Distance Similarity Function

Edit distance is a metric

Similarity function

xe = 1 −
e

n
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Edit Distance Example

For example, for barnes, anderson, have
possible minimal edit path

(b, ε) a (r, n) (n, d) e (ε, r) s (ε, o) (ε, n)
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Edit Distance Example

For example, for barnes, anderson, have
possible minimal edit path

(b, ε) a (r, n) (n, d) e (ε, r) s (ε, o) (ε, n)

So

xe = 1 −
6

8
=

1

4
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Edit Distance Example

For example, for barnes, anderson, have
possible minimal edit path

(b, ε) a (r, n) (n, d) e (ε, r) s (ε, o) (ε, n)

So

xe = 1 −
6

8
=

1

4

Note order of characters very important
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Longest Common Subsequence

Length of longest common subsequence (lcs)
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Longest Common Subsequence

Length of longest common subsequence (lcs)

Similar dynamic programming algorithm,
without substitutions

e (αi, βj) = min











e (αi−1, βj) + 1

e (αi, βj−1) + 1

e (αi−1, βj−1) if ai = bj
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LCS Similarity Function

Similarity function

xc =
l

m
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LCS Similarity Function

Similarity function

xc =
l

m

Example lcs= (a, n, e, s), similarity score

xc =
4

6
=

2

3
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Combination Similarity Function

Compute both edit distance and lcs
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Combination Similarity Function

Compute both edit distance and lcs

Combined score

xec =
1

2

(

(

1 −
e

n

)

+
l

m

)
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Combination Similarity Function

Compute both edit distance and lcs

Combined score

xec =
1

2

(

(

1 −
e

n

)

+
l

m

)

Example

xec =
1

2

(

1

4
+

2

3

)

=
11

24
.
= 0.4583
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Evaluating String Comparators

Yancey, “Evaluating String Comparator
Performance for Record Linkage,” 2005,
http://www.census.gov/srd/www/byname.html
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Evaluating String Comparators

Yancey, “Evaluating String Comparator
Performance for Record Linkage,” 2005,
http://www.census.gov/srd/www/byname.html

Compare performance
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Evaluating String Comparators

Yancey, “Evaluating String Comparator
Performance for Record Linkage,” 2005,
http://www.census.gov/srd/www/byname.html

Compare performance
Jaro-Winkler
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Evaluating String Comparators

Yancey, “Evaluating String Comparator
Performance for Record Linkage,” 2005,
http://www.census.gov/srd/www/byname.html

Compare performance
Jaro-Winkler
Edit distance
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Evaluating String Comparators, Cont.

Jaro-Winkler, with and without modifications
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Evaluating String Comparators, Cont.

Jaro-Winkler, with and without modifications
Prefix adjustment
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Evaluating String Comparators, Cont.

Jaro-Winkler, with and without modifications
Prefix adjustment
Similar characters
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Evaluating String Comparators, Cont.

Jaro-Winkler, with and without modifications
Prefix adjustment
Similar characters
Long suffix adjustment
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Evaluating String Comparators, Cont.

Edit distance
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Evaluating String Comparators, Cont.

Edit distance
Edit distance similarity
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Evaluating String Comparators, Cont.

Edit distance
Edit distance similarity
Markov edit distance (J. Wei. “Markov Edit
Distance”. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 26,
No. 3, pp. 311–321, 2004)
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Evaluating String Comparators, Cont.

Edit distance
Edit distance similarity
Markov edit distance (J. Wei. “Markov Edit
Distance”. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 26,
No. 3, pp. 311–321, 2004)
With and without lcs
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Evaluating String Comparators, Cont.

Lots of data
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Evaluating String Comparators, Cont.

Lots of data

Truth decks from 1990 and 2000 U.S. Census
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Evaluating String Comparators, Cont.

Lots of data

Truth decks from 1990 and 2000 U.S. Census

M : All non-identical, non-blank names from
matched record pairs
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Evaluating String Comparators, Cont.

Lots of data

Truth decks from 1990 and 2000 U.S. Census

M : All non-identical, non-blank names from
matched record pairs

U : All cross pairs of these names
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Results of String Comparator Evaluation

Jaro-Winkler did well
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Results of String Comparator Evaluation

Jaro-Winkler did well
Prefix adjustment always helps
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Results of String Comparator Evaluation

Jaro-Winkler did well
Prefix adjustment always helps
Similar character adjustment generally
helps a bit
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Results of String Comparator Evaluation

Jaro-Winkler did well
Prefix adjustment always helps
Similar character adjustment generally
helps a bit
Long suffix adjustment sometime helps a
little

Record Linkage: Theory and Practice – p. 91/134



Results of String Comparator Evaluation,

Adding lcs significantly improves edit distance
and Markov edit distance
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Results of String Comparator Evaluation,

Adding lcs significantly improves edit distance
and Markov edit distance

Edit distance always better than Markov edit
distance
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Results of String Comparator Evaluation,

Adding lcs significantly improves edit distance
and Markov edit distance

Edit distance always better than Markov edit
distance

Jaro-Winkler (full) comparable to edit
distance/lcs
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Results of String Comparator Evaluation,

Adding lcs significantly improves edit distance
and Markov edit distance

Edit distance always better than Markov edit
distance

Jaro-Winkler (full) comparable to edit
distance/lcs

Usually
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Jaro-Winkler Anomaly

Let α, β be strings of length n with no
common characters
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Jaro-Winkler Anomaly

Let α, β be strings of length n with no
common characters

For Jaro-Winkler
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Jaro-Winkler Anomaly

Let α, β be strings of length n with no
common characters

For Jaro-Winkler
s (α, αβ) = 5

6
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Jaro-Winkler Anomaly

Let α, β be strings of length n with no
common characters

For Jaro-Winkler
s (α, αβ) = 5

6

In n ≥ 4, with prefix adjustment,
s (α, αβ) = 9

10
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Jaro-Winkler Anomaly

Let α, β be strings of length n with no
common characters

For Jaro-Winkler
s (α, αβ) = 5

6

In n ≥ 4, with prefix adjustment,
s (α, αβ) = 9

10

s (β, αβ) = 0
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Jaro-Winkler Anomaly

Let α, β be strings of length n with no
common characters

For Jaro-Winkler
s (α, αβ) = 5

6

In n ≥ 4, with prefix adjustment,
s (α, αβ) = 9

10

s (β, αβ) = 0

For edit-distance/lcs, s (α, αβ) = s (β, αβ) = 3
4
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Hybrid Comparator

Compute both Jaro-Winkler and edit
distance/lcs
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Hybrid Comparator

Compute both Jaro-Winkler and edit
distance/lcs

Use larger of Jaro-Winkler and (scaled) edit
distance/lcs
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Hybrid Comparator

Compute both Jaro-Winkler and edit
distance/lcs

Use larger of Jaro-Winkler and (scaled) edit
distance/lcs

Where J-W does well, hybrid does a little
better than either
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Hybrid Comparator

Compute both Jaro-Winkler and edit
distance/lcs

Use larger of Jaro-Winkler and (scaled) edit
distance/lcs

Where J-W does well, hybrid does a little
better than either

Where J-W does significantly worse, hybrid
does nearly as well as edit distance/lcs

Record Linkage: Theory and Practice – p. 94/134



Hybrid Comparator, Cont.

Can see some improvement in actual record
linkage results
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Hybrid Comparator, Cont.

Can see some improvement in actual record
linkage results

Calculation takes a long time
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String Comparator Summary

String comparator improves record linkage
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String Comparator Summary

String comparator improves record linkage

String comparator takes significant amount of
record linkage computation time
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String Comparator Summary

String comparator improves record linkage

String comparator takes significant amount of
record linkage computation time

For J-W, about 30%
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More Than Two Latent Classes

EM algorithm generalizes to more than 2
classes, M,U
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More Than Two Latent Classes

EM algorithm generalizes to more than 2
classes, M,U

Does U have any natural partitions?

Record Linkage: Theory and Practice – p. 97/134



More Than Two Latent Classes

EM algorithm generalizes to more than 2
classes, M,U

Does U have any natural partitions?

For Census data
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More Than Two Latent Classes

EM algorithm generalizes to more than 2
classes, M,U

Does U have any natural partitions?

For Census data
U1, different people, same household
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More Than Two Latent Classes

EM algorithm generalizes to more than 2
classes, M,U

Does U have any natural partitions?

For Census data
U1, different people, same household
U2, different people, different household
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More Than Two Latent Classes

EM algorithm generalizes to more than 2
classes, M,U

Does U have any natural partitions?

For Census data
U1, different people, same household
U2, different people, different household

Classes have to be implicit in the matching
data
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EM for Three Classes

Use EM to estimate Pr (U1) ,Pr (U2), and
marginal probabilities Pr (γi|U1) ,Pr (γi|U2)
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EM for Three Classes

Use EM to estimate Pr (U1) ,Pr (U2), and
marginal probabilities Pr (γi|U1) ,Pr (γi|U2)

Recombine

Pr (γi|U) =
Pr (γi|U1) Pr (U1) + Pr (γi|U2) Pr (U2)

Pr (U1) + Pr (U2)
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More Than Two Comparison Values

Can have more than {agree, disagree}
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More Than Two Comparison Values

Can have more than {agree, disagree}

For m comparison values, EM algorithm must
estimate 2 (m − 1) parameters
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More Than Two Comparison Values

Can have more than {agree, disagree}

For m comparison values, EM algorithm must
estimate 2 (m − 1) parameters

We have used {agree, disagree, missing}
when data is often missing but has
distinguishing power when present
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More Than Two Comparison Values

Can have more than {agree, disagree}

For m comparison values, EM algorithm must
estimate 2 (m − 1) parameters

We have used {agree, disagree, missing}
when data is often missing but has
distinguishing power when present

For example, middle initial

Record Linkage: Theory and Practice – p. 99/134



More Than Two Compr. Values, Cont.

Reasonability check for parameter estimation

log
Pr (blank|M)

Pr (blank|U)
≈ 0
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One-to-one Matching

If both files have no duplication within them,
then it is preferable to have output with each
record linked to no more than one record in
the other file
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One-to-one Matching

If both files have no duplication within them,
then it is preferable to have output with each
record linked to no more than one record in
the other file

All records that are compared with each other
are within a block
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One-to-one Matching

If both files have no duplication within them,
then it is preferable to have output with each
record linked to no more than one record in
the other file

All records that are compared with each other
are within a block

Linear assignment algorithm used to find
optimal one-to-one matches within a block
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Linear Assignment Algorithm

For agreement weights in block

B1 B2 B3 · · · Bn

A1 w11 w12 w13 w1n

A2 w21 w22 w23 w2n

A3 w31 w32 w33 w3n
...

An wn1 wn2 wn3 wnn
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Linear Assignment Algorithm

Find permutation σ̄ that maximizes

n
∑

i=1

wi,σ(i)
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Linear Assignment Algorithm

Find permutation σ̄ that maximizes

n
∑

i=1

wi,σ(i)

Not a greedy algorithm
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Linear Assignment Algorithm

Find permutation σ̄ that maximizes

n
∑

i=1

wi,σ(i)

Not a greedy algorithm

Father 40 ↔ Mother 39

Mother 39 ↔ Daughter 16

Daughter 16 ↔ Son 13

Son 13
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Error Rates

False Match Rate

µ = Pr (L |U) = Pr (w (γ) < Tµ |U)
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Error Rates

False Match Rate

µ = Pr (L |U) = Pr (w (γ) < Tµ |U)

False Non-match Rate

λ = Pr (N |M) = Pr (w (γ) > Tλ |U)
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Practical Considerations

Question: Relative to what sample space?
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Practical Considerations

Question: Relative to what sample space?
A × B
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Practical Considerations

Question: Relative to what sample space?
A × B

Pairs in blocking scheme
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Practical Considerations

Question: Relative to what sample space?
A × B

Pairs in blocking scheme
After 1-1 matching
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Practical Considerations

Question: Relative to what sample space?
A × B

Pairs in blocking scheme
After 1-1 matching

Each step presumably filters out a lot of
low-weight pairs
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False Non-Match Rate

Difficult to determine as well as define
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False Non-Match Rate

Difficult to determine as well as define

May as well try to estimate number of
undiscovered matches in A × B
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False Non-Match Rate

Difficult to determine as well as define

May as well try to estimate number of
undiscovered matches in A × B

Can try capture-recapture using independent
blocking schemes

Record Linkage: Theory and Practice – p. 106/134



False Match Rate

Bellin-Rubin
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False Match Rate

Bellin-Rubin

Larsen
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False Match Rate

Bellin-Rubin

Larsen

Larsen, Rubin, Winkler
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Bellin-Rubin

Bellin, T.R. and Rubin, D.B. (1995) “A Method
for Calibrating False-Match Rates in Record
Linkage,” Journal of the American Statistical
Association, 90,pp.694–707.
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Bellin-Rubin

Bellin, T.R. and Rubin, D.B. (1995) “A Method
for Calibrating False-Match Rates in Record
Linkage,” Journal of the American Statistical
Association, 90,pp.694–707.

Consider sample space without 1-1 matching
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Bellin-Rubin

Bellin, T.R. and Rubin, D.B. (1995) “A Method
for Calibrating False-Match Rates in Record
Linkage,” Journal of the American Statistical
Association, 90,pp.694–707.

Consider sample space without 1-1 matching

Model as a mixture of 2 normal distributions
(Box-Cox)
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Bellin-Rubin

Bellin, T.R. and Rubin, D.B. (1995) “A Method
for Calibrating False-Match Rates in Record
Linkage,” Journal of the American Statistical
Association, 90,pp.694–707.

Consider sample space without 1-1 matching

Model as a mixture of 2 normal distributions
(Box-Cox)

M and U must be well-separated and
unimodal
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Larsen

Larsen, M.D. “Hierarchical Bayesian Record
Linkage Theory,” Iowa State University,
Statiistics Department Technical Report
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Larsen

Larsen, M.D. “Hierarchical Bayesian Record
Linkage Theory,” Iowa State University,
Statiistics Department Technical Report

Estimate error rates with 1-1 matching
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Larsen

Larsen, M.D. “Hierarchical Bayesian Record
Linkage Theory,” Iowa State University,
Statiistics Department Technical Report

Estimate error rates with 1-1 matching

Complicated restrained optimization
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Larsen

Larsen, M.D. “Hierarchical Bayesian Record
Linkage Theory,” Iowa State University,
Statiistics Department Technical Report

Estimate error rates with 1-1 matching

Complicated restrained optimization

Metropolis-Hastings procedure
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Improved Parameter Estimates

Recall, if we had correct parameter values
(and model), under Fellegi-Sunter, error rates
are known
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Improved Parameter Estimates

Recall, if we had correct parameter values
(and model), under Fellegi-Sunter, error rates
are known

Improve parameter estimates using training
data

Record Linkage: Theory and Practice – p. 110/134



Extended Likelihood Function

For unlabled sample space S and labeled
training data set T , extended likelihood
function

L =





∏

(a,b)∈S

Pr (γ (a, b))





1−λ



∏

(a,b)∈T

Pr (γ (a, b))





λ

for 0 ≤ λ ≤ 1
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Extended Likelihood Function

For unlabled sample space S and labeled
training data set T , extended likelihood
function

L =





∏

(a,b)∈S

Pr (γ (a, b))





1−λ



∏

(a,b)∈T

Pr (γ (a, b))





λ

for 0 ≤ λ ≤ 1

Estimate using EM

Record Linkage: Theory and Practice – p. 111/134



Larsen, Rubin

Larsen, M.D. and Rubin, D.B. (2001) “Iterative
Automated Record Linkage Using Mixture
Models,” Journal of the American Statistical
Association 79, pp.32–41
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Larsen, Rubin

Larsen, M.D. and Rubin, D.B. (2001) “Iterative
Automated Record Linkage Using Mixture
Models,” Journal of the American Statistical
Association 79, pp.32–41

T is sample of pairs from the clerical review
region that have been clerically reviewed
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Winkler

Winkler, W.E. “Automatically Estimating
Record Linkage False Match Rates,” (2007)
http://www.census.gov/srd/www/byname.html
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Winkler

Winkler, W.E. “Automatically Estimating
Record Linkage False Match Rates,” (2007)
http://www.census.gov/srd/www/byname.html

T is sample of “pseudo-truth” data: pairs with
sufficiently high or sufficiently low weight
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Data Preparation

Files must have matching fields of fixed
length and location
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Data Preparation

Files must have matching fields of fixed
length and location

Matching fields are compared on a character
by character basis
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Data Preparation

Files must have matching fields of fixed
length and location

Matching fields are compared on a character
by character basis

Unnecessary inconsistencies must be
removed before matching is done
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Basic Preparation

Consistently encode categorical variables
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Basic Preparation

Consistently encode categorical variables
Sex, race
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Basic Preparation

Consistently encode categorical variables
Sex, race
Date, age
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Basic Preparation

Consistently encode categorical variables
Sex, race
Date, age

Spelling standardization
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Basic Preparation

Consistently encode categorical variables
Sex, race
Date, age

Spelling standardization
Titles: Dr, Dr., Doctor
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Basic Preparation

Consistently encode categorical variables
Sex, race
Date, age

Spelling standardization
Titles: Dr, Dr., Doctor
Nicknames: Bill, William
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Basic Preparation

Consistently encode categorical variables
Sex, race
Date, age

Spelling standardization
Titles: Dr, Dr., Doctor
Nicknames: Bill, William
Standard words: Co, Co., Cmpny,
Company
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Basic Preparation, Cont.

Identify and parse components
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Basic Preparation, Cont.

Identify and parse components
Names: last, first
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Basic Preparation, Cont.

Identify and parse components
Names: last, first
Addresses: number, street, unit
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Address Parsing

16 W Main ST APT 16

RR 2 BX 215

Fuller BLDG SUITE 405

14588 HWY 16 W
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Address Parsing

16 W Main ST APT 16

RR 2 BX 215

Fuller BLDG SUITE 405

14588 HWY 16 W

Pre2 Hsnm Stnm RR Box Post1 Post2 Unit1 Unit2 Bldg

W 16 Main 16

2 215

405 Fuller

14588 HWY 16 W
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Business Lists

Much harder
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Business Lists

Much harder

May have fewer comparison fields
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Business Lists

Much harder

May have fewer comparison fields
Name
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Business Lists

Much harder

May have fewer comparison fields
Name
Address
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Business Lists

Much harder

May have fewer comparison fields
Name
Address
Phone
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Business Lists

Much harder

May have fewer comparison fields
Name
Address
Phone

These may not be unique
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Business Lists

Much harder

May have fewer comparison fields
Name
Address
Phone

These may not be unique

May be difficult to parse
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Example of Business Name Parsing

DR John J Smith MD

Smith DRY FRM

Smith & Son ENTP
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Example of Business Name Parsing

DR John J Smith MD

Smith DRY FRM

Smith & Son ENTP

Pre First Mid Last Post1 Post2 Bus1 Bus2

DR John J Smith MD

Smith DRY FRM

Smith Son ENTP
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Two Kinds of Standardizer

Deterministic
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Two Kinds of Standardizer

Deterministic
Rule based
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Two Kinds of Standardizer

Deterministic
Rule based

Probabilistic
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Two Kinds of Standardizer

Deterministic
Rule based

Probabilistic
Hidden Markov model
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Rule-Based Standardizer

U.S. Census Bureau software
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Rule-Based Standardizer

U.S. Census Bureau software

Based on extensive expert experience
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Rule-Based Standardizer

U.S. Census Bureau software

Based on extensive expert experience

Created for a specific sample space
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Hidden Markov Standardizer

Adaptable to different sample spaces
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Hidden Markov Standardizer

Adaptable to different sample spaces

Based on training data
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Hidden Markov Standardizer Reference

P. Christen, T. Churches, J.X. Jhu. (2002) “Probabilistic
Name and Address Cleaning and Standardization.”
The Australasian Data Mining Workshop.
http://datamining.anu.eedu.au/projects/linkage.html
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Hidden Markov Standardizer Reference

P. Christen, T. Churches, J.X. Jhu. (2002) “Probabilistic
Name and Address Cleaning and Standardization.”
The Australasian Data Mining Workshop.
http://datamining.anu.eedu.au/projects/linkage.html

T. Churches, P. Christen, J. Lu, J.X. Zhu. (2002)
“Preparation of Name and Address Data for Record
Linkage Using Hidden Markov Models.” BioMed
Central Medical Informatics and Decision Making, 2(9),
http://www.biomedcentral.com/1472-6947/2/9.
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Hidden Markov Standardizer Reference

P. Christen, T. Churches, J.X. Jhu. (2002) “Probabilistic
Name and Address Cleaning and Standardization.”
The Australasian Data Mining Workshop.
http://datamining.anu.eedu.au/projects/linkage.html

T. Churches, P. Christen, J. Lu, J.X. Zhu. (2002)
“Preparation of Name and Address Data for Record
Linkage Using Hidden Markov Models.” BioMed
Central Medical Informatics and Decision Making, 2(9),
http://www.biomedcentral.com/1472-6947/2/9.

FEBRL Project (Freely Extensible Biomedical Record
Linkage)
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Hidden Markov Model

Identify a finite number of hidden Markov
states
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Hidden Markov Model

Identify a finite number of hidden Markov
states

first, last1, last2, mi, prefix, suffix
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Hidden Markov Model

Identify a finite number of hidden Markov
states

first, last1, last2, mi, prefix, suffix

Use training data to assign transition
probabilities from one state to the next

Record Linkage: Theory and Practice – p. 124/134



Hidden Markov Model

Identify a finite number of hidden Markov
states

first, last1, last2, mi, prefix, suffix

Use training data to assign transition
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Hidden Markov Model

Identify a finite number of hidden Markov
states

first, last1, last2, mi, prefix, suffix

Use training data to assign transition
probabilities from one state to the next

Use training data to assign probabilities for
observations having given hidden state

Look-up lists
Coded rules
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Hidden Markov Model, Cont.

Break object into component observations,
assign them initial Markov states
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Hidden Markov Model, Cont.
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assign them initial Markov states
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Hidden Markov Model, Cont.

Break object into component observations,
assign them initial Markov states

“sir”, “mick”, “jagger”, “mbe”

Compute the highest probability sequence of
hidden states for the given observations
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Viterbi Algorithm

Not feasible to compute probabilities for all
possible paths O

(
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Viterbi Algorithm

Not feasible to compute probabilities for all
possible paths O

(

nl
)

Dynamic programming algorithm O (nl)

Each state is arrived at by the most probable
subpath (Markov property)
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HMM Diagram

Start End

A

B

C

A

B

C

“sir” “mick”
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Standardization Summary

Much more time is likely to be spent preparing
the data than performing the record linkage
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Standardization Summary

Much more time is likely to be spent preparing
the data than performing the record linkage

Records that fail to be standardized will
probably fail to be matched
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U.S. Census Bureau Software

Matching programs
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Matching Programs: Matcher
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Matching Programs: Matcher
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Matching Programs: Matcher

Matcher
One-to-one matching

Files should not have duplicates
Pre-sort files according to blocking scheme
Can re-run program on residual files

Resort files according to new blocking
scheme
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Matching Programs: Bigmatch

Bigmatch
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Matching Programs: Bigmatch

Bigmatch
No one-to-one matching

Can be used for deduplicating file
Do not pre-sort files
Can run several blocking schemes
Can match several files to one file
One file must fit into memory
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Auxiliary Programs: Counter

Counter program
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Auxiliary Programs: Counter

Counter program
Simplified matching program
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Auxiliary Programs: Counter

Counter program
Simplified matching program
Counts number of times each matching
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Counter program
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Auxiliary Programs: Counter

Counter program
Simplified matching program
Counts number of times each matching
pattern occurs
String comparator has (high) cutoff
Provides input for EM
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Auxiliary Programs: EM

EM algorithm program

Record Linkage: Theory and Practice – p. 133/134



Auxiliary Programs: EM

EM algorithm program
Estimates probability parameters for given
file and blocking scheme
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Auxiliary Programs: EM

EM algorithm program
Estimates probability parameters for given
file and blocking scheme
Has 2-class and 3-class versions
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Auxiliary Programs, Standardizer

Standardizer
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Auxiliary Programs, Standardizer

Standardizer
Standardizes names and addresses
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Auxiliary Programs, Standardizer

Standardizer
Standardizes names and addresses
Rule-based parsing

Record Linkage: Theory and Practice – p. 134/134
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