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Definition

A procedure to find pairs of records in two
files that represent the same entity
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Definition

A procedure to find pairs of records in two
files that represent the same entity

When both files are the same file, the
procedure is to find duplicate records
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Terminology

Matched records: both records represent the
same entity in truth
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Terminology

Matched records: both records represent the
same entity in truth

Linked records: Both records are identified
by record linkage procedure as probably
representing the same entity
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Uses

Updating and deduplicating a survey frame
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Uses

Updating and deduplicating a survey frame
Merging two files for microdata anlysis
Determine confidentiality of microdata
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Uses

Updating and deduplicating a survey frame
Merging two files for microdata anlysis
Determine confidentiality of microdata
Measure a population by capture-recapture
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Capture-Recapture

Let A, B be independent random samples of
sample space S

CEH:‘AHB‘ ZBloz‘A\B‘
:1:01:\B\A\ CI?()():‘S\ (AUB)l
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Capture-Recapture

Let A, B be independent random samples of
sample space S

CEH:‘AHB‘ ZBlO:‘A\B‘
:1:01:\B\A\ CI?()():‘S\ (AUB)l
Then

L1441
L11

Zoo = F [zo0] =
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Capture-Recapture, Cont.

Take two independent surveys of a region
and estimate the number of people missed.
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Capture-Recapture, Cont.

Take two independent surveys of a region
and estimate the number of people missed.

Note accuracy of estimate depends on

accuracy of x;;, as determined by record
linkage

Y.M.M. Bishop,S.E. Fienberg, PW. Holland,
Discrete Multivariate Analysis, Theory and
Priactice, Chapter 6. MIT Press, 1975
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Context

Files have records of fixed length with fields
of fixed length and position (or in a database
with retrievable individual fields)
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Context

Files have records of fixed length with fields
of fixed length and position (or in a database
with retrievable individual fields)

Not a search algorithm
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Deterministic Record Linkage

Records are linked when
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Deterministic Record Linkage

Records are linked when
. They agree exactly on all matching fields
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Deterministic Record Linkage

Records are linked when
- They agree exactly on all matching fields
- Or on predetermined portion of fields
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Probabillistic Record Linkage

Assign a probabillistic weighting to record
pairs
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Probabillistic Record Linkage

Assign a probabillistic weighting to record
pairs

Accepts record pairs with sufficiently high
weights as linked pairs
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Not Statistical Matching

Statistical matching: Bring together pairs of
records with statistically similar
characteristics, not necessarily representing

the same entity
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Not Statistical Matching

Statistical matching: Bring together pairs of
records with statistically similar
characteristics, not necessarily representing
the same entity

Usually for two files that represent different
samples of a population
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Not Statistical Matching

Statistical matching: Bring together pairs of
records with statistically similar
characteristics, not necessarily representing
the same entity

Usually for two files that represent different
samples of a population

Older practice than exact matching
(deterministic or probabilistic)

USCENSUSBUREAU



Need for Automated Record Linkage

Clerical matching is:
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Need for Automated Record Linkage

Clerical matching is:

expensive
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Need for Automated Record Linkage

Clerical matching is:
expensive

slow
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Need for Automated Record Linkage

Clerical matching is:
expensive
slow

error prone
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Need for Automated Record Linkage

Clerical matching is:
expensive
slow
error prone
Clerical 1988 1990

Computer match proportion 0% 0% 75%
# clerks 1000 600 200

#months 5) 1.5 1.5
- ) _ 0 0 0
USCENSUSBUREAU 2% . 02% 0.2%
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Rec. Link. Theory: Fellegli & Sunter

Basic Definitions and Notation
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Rec. Link. Theory: Fellegi & Sunter

Basic Definitions and Notation
Agreement Patterns

Example Comparison Space
Conditional Probabilities
Linkage Rule

Error Rates

Clerical Region

Fundamental Theorem
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Sets of entities A, B
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Sets of entities A, B
Corresponding files of records a (A) , 5 (B)

Sample space a (A) x 3 (B)
Matches
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Nonmatches
U= {(a(a),B(b)]| a#b}
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Basic Definitions and Notation

Sets of entities A, B
Corresponding files of records a (A) , 5 (B)

Sample space a (A) x 3 (B)
Matches
M = {(a(a),B())| a=0b}
Nonmatches
U= {(a(a),B(b)]| a#b}
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Agreement Patterns

Comparison space

a(A)x B(B) =T
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Comparison vector
vel

Each component of comparison vector can take on
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Agreement Patterns

Comparison space

a(A)x B(B) =T

Comparison vector
vel

Each component of comparison vector can take on
finitely many values, typically two

T IS (717727”'777%)

Vi € {Ov 1}
USCENSUSEBEUREAU
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Example Comparison Space

Consider 3 binary comparisons
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Example Comparison Space

Consider 3 binary comparisons
M pair agrees on last name
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Example Comparison Space

Consider 3 binary comparisons
M pair agrees on last name
" Y9 pair agrees on first name
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Example Comparison Space

Consider 3 binary comparisons

M pair agrees on last name
" Y9 pair agrees on first name
Y3 palr agrees on street name
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Example Comparison Space

Consider 3 binary comparisons

3
2
3

pair agrees on last name
pair agrees on first name

nair agrees on street name

Sample agreement pattern

v=(1,0,1)

USCENSUSBUREAU
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Conditional Probabillities

Probability that a record pair has agreement
pattern ~, given that it is a match/nonmatch

Pr (] M)
Pr(v|U)
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Conditional Probabillities

Probability that a record pair has agreement
pattern ~, given that it is a match/nonmatch

Pr (v|M)
Pr (]U)
Agreement ratio
_ Pr(y|M)
0= e o)
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Conditional Probabillities

Probability that a record pair has agreement
pattern ~, given that it is a match/nonmatch

Pr (y|M)
Pr (v|U)
Agreement ratio
_ Pr(y|M)
0= B

Conditioned on the unobservable truth
USCENSUSBUREAU



Linkage Rule

Designate a record pair’s status based on Its
agreement pattern

USCENSUSBUREAU

Record Linkage: Theory and Practice — p. 20/134



Linkage Rule

Designate a record pair’s status based on Its
agreement pattern

Link
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Linkage Rule

Designate a record pair’s status based on Its
agreement pattern

Link
Non-link
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Linkage Rule

Designate a record pair’s status based on Its
agreement pattern

Link
Non-link
Undecided
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Linkage Rule

Designate a record pair’s status based on Its
agreement pattern

Link
Non-link
Undecided
L:T—{L,N,C}
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Error Rates

False match—a linked pair that is not a match

Record Linkage: Theory and Practice — p. 21/134



Error Rates

False match—a linked pair that is not a match

False nonmatch—a nonlinked pair that is a match
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Error Rates

False match—a linked pair that is not a match

False nonmatch—a nonlinked pair that is a match

False match rate—probability that a designated link is a
nonmatch
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Error Rates

False match—a linked pair that is not a match

False nonmatch—a nonlinked pair that is a match

False match rate—probability that a designated link is a
nonmatch

p="Pr(L|U)
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Error Rates

Fa
Fa
Fa

se match—a linked pair that is not a match
se nonmatch—a nonlinked pair that is a match

se match rate—probability that a designated link is a

nonmatch

p="Pr(L|U)

False nonmatch rate—probability that a designated
nonlink iIs a match
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Error Rates

Fa
Fa
Fa

se match—a linked pair that is not a match
se nonmatch—a nonlinked pair that is a match

se match rate—probability that a designated link is a

nonmatch

p="Pr(L|U)

False nonmatch rate—probability that a designated
nonlink iIs a match

A\ = Pr (N|M)
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Error Rates, Cont.

If all pairs of records are designated link or
nonlink
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Error Rates, Cont.

If all pairs of records are designated link or
nonlink

Match Nonmatch
Link 1— A u=Pr(L|U)
Nonlink A\ = Pr(N|M) 1 —
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Clerical Region

The set C of record pairs which are
designated neither probable link nor probable
nonlink by the linkage rule
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Clerical Region

The set C of record pairs which are

designated neither probable link nor probable
nonlink by the linkage rule

The match status of these pairs is left to
clerical review

USCENSUSBUREAU
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Fundamental Theorem

Fellegli & Sunter (“A Theory for Record
Linkage”, JASA, December,1969)
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Fundamental Theorem

Fellegli & Sunter (“A Theory for Record
Linkage”, JASA, December,1969)

Order the comparison vectors {4/} by their
agreement ratios R (/)

USCENSUSBUREAU



Fundamental Theorem

Fellegli & Sunter (“A Theory for Record
Linkage”, JASA, December,1969)

Order the comparison vectors {4/} by their
agreement ratios R (/)

Choose upper 7,, and lower T}, cutoff values
for R (v)
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Fundamental Theorem, Cont.

Linkage rule:
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Fundamental Theorem, Cont.

Linkage rule:
Pairs with R (77) > T,, are designated links
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Fundamental Theorem, Cont.

Linkage rule:
Pairs with R (77) > T,, are designated links

Pairs with R (7/) < T) are designated
nonlinks
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Fundamental Theorem, Cont.

Linkage rule:
Pairs with R (77) > T,, are designated links

Pairs with R (7/) < T) are designated
nonlinks

Pairs with 7, < R (7’) < T, are in the clerical
region
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Fundamental Theorem, Cont.

The error rates for this linkage rule are
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Fundamental Theorem, Cont.

The error rates for this linkage rule are

Z Pr (1/|U)

ny >T
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Fundamental Theorem, Cont.

The error rates for this linkage rule are

Z Pr (1/|U)

ny >T

= Y  Pr(y|M)

R(7)<T

USCENSUSBUREAU



Fundamental Theorem, Cont.

Theorem: For these error rates u, A, this iIs
the optimal linkage rule, in the sense of
producing the minimum size critical region
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Fundamental Theorem, Cont.

Theorem: For these error rates u, A, this iIs
the optimal linkage rule, in the sense of
producing the minimum size critical region

In other words, for a given error bound
tolerance, this rule make as many linkage
decisions as possible
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Welight Distribution for Matches

weight
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Welight Distribution for Matches

g weight
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Welight Distribution for Non-Matches

weight
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Welight Distribution for Non-Matches

Pr (w (v) < wp|U)

Wo weight
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ldealized Distributions

weight
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ldealized Distributions

N 1 weight
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ldealized Distributions

Non-Links Clerical Links

N 1 weight
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Error Rates, Clerical Review Region

weight
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Error Rates, Clerical Review Region

1 T, weight
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Error Rates, Clerical Review Region

A=Pr(w(y) <Ty|M) _—p=Pr(w(y) >T,|U)

T 1 weight

USCENSUSBUREAU



Conditional Independence Assumptio

To facilitate computation of conditional probabilities,
Fellegi & Sunter assume conditional independence of
comparison vector components
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Conditional Independence Assumptio

To facilitate computation of conditional probabilities,
Fellegi & Sunter assume conditional independence of
comparison vector components

For v = (71,7, .- -, Vn), @SSUME
Pr(y|M) = ]][Pr(nM)
1=1

Pr(y0) = ][Pr(ul0)
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Cond. Indep. Assumption, Cont.

The factors Pr (y;| M) , Pr (y,;|U) are called
marginal probabillities
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Cond. Indep. Assumption, Cont.

The factors Pr (y;| M) , Pr (y,;|U) are called
marginal probabillities

The ratio
Pr (%‘|M)

Pr (7;|U)

determines the distinguishing power of the
comparison ~;
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Cond. Indep. Assumption, Cont.

Under conditional independence assumption, it is
convenient to compute the weight of the
comparison vector
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Cond. Indep. Assumption, Cont.

Under conditional independence assumption, it is
convenient to compute the weight of the
comparison vector

w(y) = logR(7)

N z”: log Pr (vi|M)
log Pr (v;|U)

=1

. Zw(%)

USCENSUSBUREAU



Cond. Indep. Assumption, Cont.

Motivation: Reduce the number of parameters
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M, U, there are 2"*! parameters

USCENSUSBUREAU

Record Linkage: Theory and Practice — p. 35/134



Cond. Indep. Assumption, Cont.

Motivation: Reduce the number of parameters

For n binary comparisons and two conditional classes
M, U, there are 2"*! parameters

- 2™ comparison vectors

USCENSUSBUREAU

Record Linkage: Theory and Practice — p. 35/134



Cond. Indep. Assumption, Cont.

Motivation: Reduce the number of parameters
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Cond. Indep. Assumption, Cont.

Motivation: Reduce the number of parameters
For n binary comparisons and two conditional classes
M, U, there are 2! parameters

- 2™ comparison vectors

- 2 conditional probabillities for each vector

Under conditional independence assumption, there are
2n parameters
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Cond. Indep. Assumption, Cont.

Motivation: Reduce the number of parameters
For n binary comparisons and two conditional classes
M, U, there are 2! parameters

- 2" comparison vectors

- 2 conditional probabillities for each vector

Under conditional independence assumption, there are
2n parameters

Rationale: Given M, errors producing disagreement
should be random

USCENSUSBUREAU
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Cond. Indep. Assumption, Cont.

Often computable in closed form
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Cond. Indep. Assumption, Cont.

Often computable in closed form

Can produce good decision rules even if
model inaccurate
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Cond. Indep. Assumption, Cont.

Often computable in closed form

Can produce good decision rules even if
model inaccurate

Refered to as naive Bayes in machine
learning

USCENSUSBUREAU
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Conditional Independence Example

Suppose

Pr(y1 =1M) = 0.9
I 0.8
Pr (v =1|M) = 0.7

iy
)
(N

|
=

|
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Conditional Independence Example

Suppose

Pr(y1 =1M) = 0.9
I 0.8
Pr (v =1|M) = 0.7

O
=
VR
)
(N
|
=
|

Then for v = (1,0, 1),
Pr(v|M)=0.9%0.2%0.7=0.126
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Conditional Independence Example

Suppose

Pr (v1|M) = 0.8 Pr(v|U)=0.1
Pr (v2|M) = 0.9 Pr(y,|U) = 0.3
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Conditional Independence Example

Suppose

Pr (v1|M) = 0.8 Pr(v|U)=0.1
Pr (v2|M) = 0.9 Pr(y,|U) = 0.3

Then
P
rn|M) _ ¢,
Pr (11|U)
P M
(M) _ .,




Fellegi-Sunter Summary

Choose conditional probability parameters

USCENSUSBUREAU
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Fellegi-Sunter Summary

Choose conditional probability parameters
Conduct field comparisons on record pairs
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Fellegi-Sunter Summary

Choose conditional probability parameters
Conduct field comparisons on record pairs

Classify record pairs based on weight of
comparison vector

USCENSUSBUREAU
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Record Linkage Methodology

Parameter estimation
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Record Linkage Methodology

Parameter estimation
- EM Algorithm
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Record Linkage Methodology

Parameter estimation
- EM Algorithm

Blocking
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Choosing Parameters

Informal
EM Algorithm
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Choosing Parameters

Informal
EM Algorithm
Other Methods
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Informal Methods I-

< Pr(y|M) <1




Informal Methods

Guess
0<Pr(7|U) <Pr(v|M) <1

Approximate
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Informal Methods

Guess
0<Pr(7|U) <Pr(v|M) <1

Approximate
Pr (v|U) = Pr(+]S)
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Informal Methods

Guess
0<Pr(7|U) <Pr(v|M) <1
Approximate
Pr (1]U) ~ Pt (4]5)
lterate
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Informal Methods

Guess
0<Pr(7|U) <Pr(v|M) <1
Approximate
Pr (v|U) = Pr (7]5)
lterate

- Perform matching with current parameters
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Informal Methods

Guess
0<Pr(7|U) <Pr(v|M) <1
Approximate
Pr (v|U) = Pr (7]5)
lterate

- Perform matching with current parameters
- Review results
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Informal Methods

Guess
0<Pr(7|U) <Pr(v|M) <1
Approximate
Pr (v|U) = Pr (7]5)
lterate

- Perform matching with current parameters
- Review results
- Adjust parameters based on observation

USCENSUSBUREAU
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EM Algorithm

Dempster, Laird, Rubin. “Maximum likelihood
from iIncomplete data via the EM algorithm”.
Journal of the Royal Statistical Society.
SeriesB. 39. pp. 1-39. 1977.
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EM Algorithm

Dempster, Laird, Rubin. “Maximum likelihood
from iIncomplete data via the EM algorithm”.
Journal of the Royal Statistical Society.
SeriesB. 39. pp. 1-39. 1977.

McLachlan, Krishnan. The EM Algorithm and
Extensions. Wiley-Interscience. 2" Ed. 2007.
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EM Algorithm

Dempster,
from Incom

_aird, Rubin. “Maximum likelihood
nlete data via the EM algorithm?”.

Journal of t

ne Royal Statistical Society.

SeriesB. 39. pp. 1-39. 1977.

McLachlan, Krishnan. The EM Algorithm and
Extensions. Wiley-Interscience. 2" Ed. 2007.

Maximum likelihood method

USCENSUSBUREAU



EM Algorit

Dempster,

hm

_aird, Rubin. “Maximum likelihood

from iIncomplete data via the EM algorithm”.
Journal of the Royal Statistical Society.
SeriesB. 39. pp. 1-39. 1977.

McLachlan
Extensions

, Krishnan. The EM Algorithm and
. Wiley-Interscience. 2"Y Ed. 2007.

Maximum likelihood method
Latent class
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EM Algorithm

Dempster,

_aird, Rubin. “Maximum likelihood

from iIncomplete data via the EM algorithm”.
Journal of the Royal Statistical Society.
SeriesB. 39. pp. 1-39. 1977.

McLachlan
Extensions

, Krishnan. The EM Algorithm and
. Wiley-Interscience. 2"Y Ed. 2007.

Maximum likelihood method
Latent class

Mixture mo

del
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Likelihood Function

L = HPr

(a,b)eS

/”L .

= TL(Pr (1) Pr (M) + Pr (3/[07) Pr (V) "

J
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Likelihood Function

— HPr

(a,b)eS

— H (Pr (| M) Pr (M) + Pr (/|U) Pr (U))"

J

nj:|{(ab)€S\7ab 7}‘
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Complete-data Likelihood Function

Consider

Xi =
¥ 0 if (a,b) €
Xj = Z X; (a,b)
v(a,b)=v?

USCENSUSBUREAU
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Complete-data Likelihood Function

Consider
( .
1 if (a,0)) e M
Xj = 9 -
0 if (a,b) €
X] . Z X (aa b)
v(a,b)=7
Then

£ =TT ((Pr (7100 Pr ) ™ (e (910) Pr () )"
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Expectation Step

Given current estimates of conditional
probabilities and Pr (M) , Pr (U), compute
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Expectation Step

Given current estimates of conditional
probabilities and Pr (M) , Pr (U), compute

E(YJ) = Pr(M|y)
1 Pr (7/|M) Pr (M)

Pr (47[M) Pr (M) + Pr (/[U) Pr (U)
— X
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Maximization Step

Given unobserved data esti'mates Xj, |
compute probabilities Pr (/| M), Pr (1/|U),
Pr (M), Pr (U) maximizing
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Maximization Step

Given unobserved data esti.mates Xj, |
compute probabilities Pr (/| M), Pr (1/|U),
Pr (M), Pr (U) maximizing

log L =

an (X] (log Pr (v | M) + log Pr (M))

J

i (1 - X]> (log Pr (+/|U) +10ng(U)))
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Max Step, Cont.

Under conditional independence
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Max Step, Cont.

Under conditional independence

log L =

zj:nj (Z X7 (log Pr (+/|M ) + log Pr (M)
(1 i XJ) (Z logPr( g\U) +logPr(U)>)
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Max Step, Cont.

For

estimate

USCENSUSBUREAU
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if 7 =1
) ify/ =0




Max Step, Cont.

Let
( ] g

1 ify =1
0 if~/ =0

N

and estimate

Pr (| M) = anXjk]

JSCENSUSBUREAU
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EM Algorithm

1. Initialize with probability values

USCENSUSBUREAU

Record Linkage: Theory and Practice — p. 51/134



EM Algorithm

1. Initialize with probability values
2. lterate
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EM Algorithm

1. Initialize with probability values

2. lterate
(a) Expectation Step
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EM Algorithm

1. Initialize with probability values

2. lterate
(a) Expectation Step
(b) Maximization Step
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EM Algorithm

1. Initialize with probability values

2. lterate
(a) Expectation Step
(b) Maximization Step

3. Until convergence of likelihood function
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EM Algorithm Remarks

Each EM iteration increases likelihood, so
algorithm converges to a (local) maximum
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EM Algorithm Remarks

Each EM iteration increases likelihood, so
algorithm converges to a (local) maximum

For this conditional independence model,
convergence is efficient and generally
Insensitive to initial data
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EM Algorithm Remarks

Each EM iteration increases likelihood, so
algorithm converges to a (local) maximum

For this conditional independence model,
convergence is efficient and generally
Insensitive to initial data

For latent class to be numerically detected, it
must be represented by about 5% of the total
record pair data
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EM Algorithm Remarks

Each EM iteration increases likelihood, so
algorithm converges to a (local) maximum

For this conditional independence model,
convergence Is efficient and generally
Insensitive to initial data

For latent class to be numerically detected, it
must be represented by about 5% of the total
record pair data

Check: Do Pr (M), Pr(U) seem reasonable?



EM Remarks, Cont.

If Pr (M), Pr (U) are off, everything is off
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EM Remarks, Cont.

If Pr (M), Pr (U) are off, everything is off

We can extend problem to comparisons
taking on more that 2 values
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EM Remarks, Cont.

If Pr (M), Pr (U) are off, everything is off

We can extend problem to comparisons
taking on more that 2 values

- Creates more pattern types and probability
parameters
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EM Remarks, Cont.

If Pr (M), Pr (U) are off, everything is off

We can extend problem to comparisons
taking on more that 2 values

- Creates more pattern types and probability
parameters

Can extend algorithm to more that 2 classes
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EM Remarks, Cont.

If Pr (M), Pr (U) are off, everything is off
We can extend problem to comparisons
taking on more that 2 values
- Creates more pattern types and probability
parameters
Can extend algorithm to more that 2 classes

- Increases number of parameters to be
estimated

USCENSUSBUREAU
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Blocking

If set A contains m records and set B
contains n records then A x B contains mn
record pairs
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Blocking

If set A contains m records and set B
contains n records then A x B contains mn
record pairs

It iIs computationally inefficient to compare all
record pairs
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Blocking

If set A contains m records and set B
contains n records then A x B contains mn
record pairs

It iIs computationally inefficient to compare all
record pairs

In practice, just bring together record pairs
that agree on some chosen features (blocking
criterion)
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Blocking

If set A contains m records and set B
contains n records then A x B contains mn
record pairs

It iIs computationally inefficient to compare all
record pairs

In practice, just bring together record pairs
that agree on some chosen features (blocking
criterion)

Generally repeat record linkage procedure for

several different blocking criteria
USCENSUSBUREA
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Blocking Criteria

Geographic codes
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Blocking Criteria

Geographic codes
Postal or phone codes
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Blocking Criteria

Geographic codes
Postal or phone codes
Name prefix

USCENSUSBUREAU

Record Linkage: Theory and Practice — p. 55/134



Blocking Criteria

Geographic codes
Postal or phone codes
Name prefix

Phonetic name codes
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Blocking Criteria

Geographic codes
Postal or phone codes
Name prefix

Phonetic name codes
. Soundex
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Blocking Criteria

Geographic codes
Postal or phone codes
Name prefix

Phonetic name codes
. Soundex
- NYSIIS

USCENSUSBUREAU



Blocking Criteria

Geographic codes
Postal or phone codes
Name prefix

Phonetic name codes
. Soundex
- NYSIIS

Combinations
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Record Linkage Refinements

String comparator
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Record Linkage Refinements

String comparator
Third latent class
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Record Linkage Refinements

String comparator
Third latent class
Third comparison value

USCENSUSBUREAU



Record Linkage Refinements

String comparator
Third latent class

Third comparison value
One-to-one matching

USCENSUSBUREAU



String Comparator

For some comparisons (e.g. categorical
variables), it Is sufficient to assign
agree/disagree
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String Comparator

For some comparisons (e.g. categorical
variables), it Is sufficient to assign
agree/disagree

For string variables (e.g. first names, last

names, street names) this is probably too
restrictive
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String Comparator

For some comparisons (e.g. categorical
variables), it Is sufficient to assign
agree/disagree

For string variables (e.g. first names, last
names, street names) this is probably too
restrictive

A string comparator allows us to assign
comparison values between full agreement
and full disagreement

USCENSUSBUREAU
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String Comparator Context

Binary comparison v € {0,1}
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String Comparator Context

Binary comparison v € {0,1}
Welight assignment

1o DL (v = 1[M)
Ay = 10
°Pr(y = 1|U)
Pr(y = 0|M)
d, =1
"> Pr(y = 0[]U)
d, < 0 < ay

USCENSUSBUREAU



String Comparator Context, Cont.

For alphabet >, our string comparator is a
similarity function

v X x X — |0,1]
v(a,0)=1ifa=7

USCENSUSBUREAU



String Comparator Context, Cont.

For alphabet >, our string comparator is a
similarity function

v X x X — |0,1]
v(a,0)=1ifa=7

Weight assignment function w Is an
Increasing interpolation function

w : 0,1 — [dy, ayl

w (1) = ay

USCENSUSBUREAU



Some String Comparator Types

Bigram, n-gram
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Some String Comparator Types

Bigram, n-gram
Jaro-Winkler
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Some String Comparator Types

Bigram, n-gram
Jaro-Winkler
Edit distance
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Bigrams

Decompose string into a set of 2-character
(contiguous) substrings

alphabet — {al, lp, ph, ha,ab, be, et}
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Bigrams

Decompose string into a set of 2-character
(contiguous) substrings

alphabet — {al, lp, ph, ha,ab, be, et}

For alphabet of s = |>| characters, record
bigram counts in a vector of dimension s?

USCENSUSBUREAU
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Bigrams, Cont.

Two strings can be compared by computing
the “angle” between their bigram vectors a, b

a-b
al 0]

cos ) =

USCENSUSBUREAU

Record Linkage: Theory and Practice — p. 62/134



Bigrams, Cont.

Two strings can be compared by computing
the “angle” between their bigram vectors a, b

a-b
al 0]

cos ) =

Obvious generalization to n-grams
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Bigrams, Cont.

Two strings can be compared by computing
the “angle” between their bigram vectors a, b

a-b
al 0]

cos ) =

Obvious generalization to n-grams
Vector for n-gram is in s dimensional space

USCENSUSBUREAU
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Bigrams, Cont.

Computation algorithm is fast (linear)
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Bigrams, Cont.

Computation algorithm is fast (linear)
Don’t work very well for record linkage
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Bigrams, Cont.

Computation algorithm is fast (linear)

Don’t work very well for record linkage
. Ignores order of bigram occurrence

abcba ~ bebab
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Bigrams, Cont.

Computation algorithm is fast (linear)

Don’t work very well for record linkage
. Ignores order of bigram occurrence

abcba =~ bcbab

- Works better for small alphabet, long
strings than vice versa

USCENSUSBUREAU
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Jaro-Winkler Comparator

In the following, let

o = (al,ag,...am),ﬂ: (bl,bg,...,bn) be
strings of lengths m, n respectively with
m < n
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Jaro-Winkler Comparator

In the following, let
o = (al,ag,...am),ﬂ: (bl,bg,...,bn) be
strings of lengths m, n respectively with m < n

Comparator value depends on number of
common characters and character
“transpositions”

USCENSUSBUREAU
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Jaro-Winkler Comparator, Cont.

Strings «, 8 have common characters a;, b; Iff

a; =

b;
' n
[ < bJ
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Jaro-Winkler Comparator, Cont.

Strings «, 8 have common characters a;, b; Iff
a, — bj
=t < [
/L S -
/ >

The number of transpositions Is computed as
the greatest integer of half of the number of
out-of-order common character pairs

USCENSUSBUREAU



Jaro-Winkler Comparator, Cont.

For string pair with ¢ common characters and
t transpositions, basis similarity score is

1(0 c c—t)
r=-|—+—A
3\m n C

USCENSUSBUREAU
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Jaro-Winkler Example

Consider the strings (b,a,r,n,e,s) and (a,n,d,e,r,s,o,n)

Record Linkage: Theory and Practice — p. 67/134



Jaro-Winkler Example

Consider the strings (b,a,r,n,e,s) and (a,n,d,e,r,s,o,n)

Search range d
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Jaro-Winkler Example

Consider the strings (b,a,r,n,e,s) and (a,n,d,e,r,s,o,n)

Search range d

Common characters
(a,7,m,e€,5)

(a,n,e,r,s)

USCENSUSBUREAU
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Jaro-Winkler Example, Cont.

Five common characters with 3 out of order,
SOc=93,t=1

USCENSUSBUREAU
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Jaro-Winkler Example, Cont.

Five common characters with 3 out of order,
SOc=93,t=1

Score
1 (5 5 4\ 271
— (2424 2) =25 = 0.75280
: 3<6+8+5> 360

USCENSUSBUREAU



Jaro-Winkler Variations

Similar characters
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Record Linkage: Theory and Practice — p. 69/134



Jaro-Winkler Variations

Similar characters
Prefix adjustment
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Jaro-Winkler Variations

Similar characters
Prefix adjustment
Long suffix adjustment
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Similar Characters

Attempt to compensate for common
misspellings or typos
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Similar Characters

Attempt to compensate for common
misspellings or typos

List of 36 pairs of characters deemed similar
(e.g. most vowell pairs)
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Similar Characters

Attempt to compensate for common
misspellings or typos

List of 36 pairs of characters deemed similar
(e.g. most vowell pairs)

After common characters designated,
remaining characters checked for similar pairs
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Similar Characters

Attempt to compensate for common
misspellings or typos

List of 36 pairs of characters deemed similar
(e.g. most vowell pairs)

After common characters designated,
remaining characters checked for similar pairs

Each similar pair is scored as 0.3 of a
common pair

USCENSUSBUREAU
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Similar Characters, Cont.

Revised character count

c, = c—+ 0.3s
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Similar Characters, Cont.

Revised character count
c, = c—+ 0.3s

Adjusted comparator score
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Similar Characters, Cont.

For example. abc and ebc have 2 common
characters and the remaining pair (a,e) are
similar, so

_1(2.2 \ 1(03 03
B 5 T 3 3\ 3 "3
71

93715

38
45
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Common Prefix

Spelling mistakes tend to occur later in the
string (Winkler)
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Common Prefix

Spelling mistakes tend to occur later in the
string (Winkler)

Check for common prefix of up to 4
characters
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Common Prefix

Spelling mistakes tend to occur later in the
string (Winkler)

Check for common prefix of up to 4

characters
If length of common prefix is p, adjust score «
by
1 —
Tp = T p( :1:)
10
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Long String Adjustment

Adjust score for longer strings with several
common characters beyond common prefix
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Long String Adjustment

Adjust score for longer strings with several
common characters beyond common prefix

Conditions for using the adjustment
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Long String Adjustment

Adjust score for longer strings with several
common characters beyond common prefix

Conditions for using the adjustment
1. m > 5
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Long String Adjustment

Adjust score for longer strings with several
common characters beyond common prefix

Conditions for using the adjustment
1. m > 5
2. c—p>2
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Long String Adjustment

Adjust score for longer strings with several
common characters beyond common prefix

Conditions for using the adjustment
1. m > 5

2. c—p>2

3. c—p=> "

USCENSUSBUREAU

Record Linkage: Theory and Practice — p. 74/134



Long String Adjust_




Long String Adjustment, Cont.

That Is,
1. Both strings are at least 5 characters long

USCENSUSBUREAU



Long String Adjustment, Cont.

That Is,
1. Both strings are at least 5 characters long

2. There are at least two common characters
besides the agreeing prefix characters

USCENSUSBUREAU
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Long String Adjustment, Cont.

That Is,
1. Both strings are at least 5 characters long

2. There are at least two common characters
besides the agreeing prefix characters

3. We want the strings outside the common
prefixes to be fairly rich in common
characters, so that the remaining common
characters are at least half of the remaining
common characters of the shorter string

USCENSUSBUREAU



Long String Adjustment, Cont.

If conditions met, then adjust score by

c—(p+1)

:z;l::z;+(1—a:)

m-+n—2(p—1)
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Long String Adjustment, Cont.

In barnes, anderson example, conditions are
met, so the adjusted score Is

271 (, 271\ _5-1
i — |
l 360 360/ 6+ 8 + 2

391

480
= 0.8146
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Jaro-Winkler Comparator

Slower algorithm (quadratic)
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Jaro-Winkler Comparator

Slower algorithm (quadratic)
Performs very well In tests
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Edit Distance String Comparators

The minimum number of edits required to
convert sting « to string 3, lengths m <n
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Edit Distance String Comparators

The minimum number of edits required to
convert sting « to string 3, lengths m <n

- Insert
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Edit Distance String Comparators

The minimum number of edits required to
convert sting « to string 3, lengths m <n

. Insert
. Delete
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Edit Distance String Comparators

The minimum number of edits required to
convert sting « to string 3, lengths m <n

. Insert
. Delete
. Substitute
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Edit Distance String Comparators

The minimum number of edits required to
convert sting « to string G, lengths m <n

- Insert
. Delete
. Substitute

Dynamic programming algorithm, quadratic
complexity O (mn)
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Edit Distance Algorithm

For «; prefix of a of length 7, 3; prefix of 3 of
length j
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Edit Distance Algorithm

—or «; prefix of o of length 7, 3, prefix of 3 of
ength »
nitialize
e (a;,€) i
e(e,05) = J
e(e,e) = 0

USCENSUSBUREAU



Edit Distance Algorithm, Cont.

Compute

& (Oéi, 6]) — min 4
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Edit Distance Algorithm, Cont.

Compute
& (Qi—la 6]) 1
. e(giaﬂj—l) +1
e (o, 0;) = min r .
( ]) ) e (047;_1, ﬂj—l) If a; = bj
| ela1,85-1) +1 Ifa; # by
Distance

€ —==¢ (0576) — € (Oémaﬂn)
USCENSUSBUREAU



Edit Distance Similarity Function

Edit distance Is a metric
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Edit Distance Similarity Function

Edit distance Is a metric
Similarity function

€
Qje: TR
n

USCENSUSBUREAU
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Edit Distance Example

For example, for barnes, anderson, have
possible minimal edit path

(b,e)a(r,n) (n,d)e(e,r)s(e,0)(e,n)
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Edit Distance Example

For example, for barnes, anderson, have
possible minimal edit path

(b,e)a(r,n) (n,d)e(e,r)s(e,0)(e,n)
SO
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Edit Distance Example

For example, for barnes, anderson, have
possible minimal edit path

(b,e)a(r,n) (n,d)e(e,r)s (e, 0)(e,n)

So
O 1
e:]_——:—
K S~ 4

Note order of characters very important
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Longest Common Subsequence

Length of longest common subsequence (lcs)

USCENSUSBUREAU



Longest Common Subsequence

Length of longest common subsequence (lcs)

Similar dynamic programming algorithm,

without substitutions

& (Oéz'—b 5;‘)

|

e (e, B;) =min ¢ e(ay, [B-1) -

-1

e(ai-1,B8j-1) fa; =0,

USCENSUSBUREAU



LCS Similarity Function

Similarity function
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LCS Similarity Function

Similarity function

[
ZCC —
m
Example Ics=(a, n, €, s), similarity score

ZEC:—:—

6 3

USCENSUSBUREAU
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Combination Similarity Function

Compute both edit distance and Ics
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Combination Similarity Function

Compute both edit distance and Ics
Combined score

SSH(GHED
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Combination Similarity Function

Compute both edit distance and Ics
Combined score

SSH(GHED

Example
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Evaluating String Comparators

Yancey, “Evaluating String Comparator
Performance for Record Linkage,” 2005,
http://www.census.gov/srd/www/byname.html
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Evaluating String Comparators

Yancey, “Evaluating String Comparator
Performance for Record Linkage,” 2005,
http://www.census.gov/srd/www/byname.html

Compare performance
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Evaluating String Comparators

Yancey, “Evaluating String Comparator
Performance for Record Linkage,” 2005,
http://www.census.gov/srd/www/byname.html

Compare performance
. Jaro-Winkler
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Evaluating String Comparators

Yancey, “Evaluating String Comparator
Performance for Record Linkage,” 2005,
http://www.census.gov/srd/www/byname.html
Compare performance

- Jaro-Winkler

. Edit distance
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Evaluating String Comparators, Cont.

Jaro-Winkler, with and without modifications
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Evaluating String Comparators, Cont.

Jaro-Winkler, with and without modifications
. Prefix adjustment
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Evaluating String Comparators, Cont.

Jaro-Winkler, with and without modifications
. Prefix adjustment
. Similar characters
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Evaluating String Comparators, Cont.

Jaro-Winkler, with and without modifications
- Prefix adjustment
. Similar characters
- Long suffix adjustment

USCENSUSBUREAU



Evaluating String Comparators, Cont.

Edit distance
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Evaluating String Comparators, Cont.

Edit distance
- Edit distance similarity
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Evaluating String Comparators, Cont.

Edit distance
- Edit distance similarity

- Markov edit distance (J. Wel. “Markov Edit
Distance”. |IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 26,

No. 3, pp. 311-321, 2004)
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Evaluating String Comparators, Cont.

Edit distance
- Edit distance similarity

- Markov edit distance (J. Wel. “Markov Edit
Distance”. |IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 26,

No. 3, pp. 311-321, 2004)
. With and without Ics
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Evaluating String Comparators, Cont.

Lots of data
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Evaluating String Comparators, Cont.

Lots of data
Truth decks from 1990 and 2000 U.S. Census
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Evaluating String Comparators, Cont.

Lots of data
Truth decks from 1990 and 2000 U.S. Census

M: All non-identical, non-blank names from
matched record pairs
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Evaluating String Comparators, Cont.

Lots of data
Truth decks from 1990 and 2000 U.S. Census

M: All non-identical, non-blank names from
matched record pairs

U: All cross pairs of these names
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Results of String Comparator Evaluati

Jaro-Winkler did well
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Results of String Comparator Evaluati

Jaro-Winkler did well
. Prefix adjustment always helps

USCENSUSBUREAU



Results of String Comparator Evaluati

Jaro-Winkler did well
- Prefix adjustment always helps

. Similar character adjustment generally
helps a bit
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Results of String Comparator Evaluati

Jaro-Winkler did well
- Prefix adjustment always helps

. Similar character adjustment generally
nelps a bit

. Long suffix adjustment sometime helps a
ittle
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Results of String Comparator Evaluati

Adding Ics significantly improves edit distance
and Markov edit distance
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Results of String Comparator Evaluati

Adding Ics significantly improves edit distance
and Markov edit distance

Edit distance always better than Markov edit
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and Markov edit distance

Edit distance always better than Markov edit
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Jaro-Winkler (full) comparable to edit
distance/Ics
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Results of String Comparator Evaluati

Adding Ics significantly improves edit distance
and Markov edit distance

Edit distance always better than Markov edit
distance

Jaro-Winkler (full) comparable to edit
distance/Ics

- Usually
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Jaro-Winkler Anomaly

Let o, B be strings of length » with no
common characters
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Jaro-Winkler Anomaly

Let o, 5 be strings of length n with no
common characters

For Jaro-Winkler

- s(a,af) =3
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Jaro-Winkler Anomaly

Let o, 5 be strings of length n with no
common characters

For Jaro-Winkler

1 (057 O‘ﬁ) : %
- In n > 4, with prefix adjustment,
s (a,af) = 15
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Jaro-Winkler Anomaly

Let o, 5 be strings of length n with no
common characters

For Jaro-Winkler

1 (047 O‘ﬁ) : %
-~ In n > 4, with prefix adjustment,
s (a,af) = 15

s (B,aB) =0
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Jaro-Winkler Anomaly

Let o, 5 be strings of length n with no
common characters

For Jaro-Winkler

s(a,ap) =

-~ In n > 4, with prefix adjustment,
s(a,af) = %

s (B,aB) =0

For edit-distance/lcs, s (a,af) = s (3, afB) = %
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Hybrid Comparator

Compute both Jaro-Winkler and edit
distance/lcs
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Hybrid Comparator

Compute both Jaro-Winkler and edit
distance/lcs

Use larger of Jaro-Winkler and (scaled) edit
distance/Ics
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Hybrid Comparator

Compute both Jaro-Winkler and edit
distance/lcs

Use larger of Jaro-Winkler and (scaled) edit
distance/lcs

Where J-W does well, hybrid does a little
better than either
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Hybrid Comparator

Compute both Jaro-Winkler and edit
distance/lcs

Use larger of Jaro-Winkler and (scaled) edit
distance/lcs

Where J-W does well, hybrid does a little
better than either

Where J-W does significantly worse, hybrid
does nearly as well as edit distance/lcs
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Hybrid Comparator, Cont.

Can see some improvement in actual record
linkage results
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Hybrid Comparator, Cont.

Can see some improvement in actual record
linkage results

Calculation takes a long time
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String Comparator Summary

String comparator improves record linkage
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String Comparator Summary

String comparator improves record linkage

String comparator takes significant amount of
record linkage computation time
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String Comparator Summary

String comparator improves record linkage

String comparator takes significant amount of
record linkage computation time

. For J-W, about 30%
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More Than Two Latent Classes

EM algorithm generalizes to more than 2
classes, M, U
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Does U have any natural partitions?
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EM algorithm generalizes to more than 2
classes, M, U

Does U have any natural partitions?

For Census data
- U, different people, same household
. Us, different people, different household
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More Than Two Latent Classes

EM algorithm generalizes to more than 2
classes, M, U

Does U have any natural partitions?

For Census data
- U, different people, same household
. Us, different people, different household

Classes have to be implicit in the matching
data
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EM for Three Classes

Use EM to estimate Pr (U;), Pr (Us), and
marginal probabilities Pr (v;|U;) , Pr (v;|Us)
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EM for Three Classes

Use EM to estimate Pr (U;), Pr (Us), and
marginal probabilities Pr (v;|U;) , Pr (v;|Us)

Recombine

Pr (y|7) = ELCilU1) Pr (L) + Pr (3]Us) Pr ()

Pr (Uy) + Pr (Us)
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More Than Two Comparison Values

Can have more than {agree, disagree}
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More Than Two Comparison Values

Can have more than {agree, disagree}

For m comparison values, EM algorithm must
estimate 2 (m — 1) parameters
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More Than Two Comparison Values

Can have more than {agree, disagree}

For m comparison values, EM algorithm must
estimate 2 (m — 1) parameters

We have used {agree, disagree, missing}
when data Is often missing but has
distinguishing power when present
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More Than Two Comparison Values

Can have more than {agree, disagree}

For m comparison values, EM algorithm must
estimate 2 (m — 1) parameters

We have used {agree, disagree, missing}
when data Is often missing but has
distinguishing power when present

- For example, middle Initial
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More Than Two Compr. Values, Cont.

Reasonability check for parameter estimation

Pr (blank|M)
Pr (blank|U)

log
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One-to-one Matching

If both files have no duplication within them,
then It Is preferable to have output with each
record linked to no more than one record In

the other file
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One-to-one Matching

If both files have no duplication within them,
then It Is preferable to have output with each
record linked to no more than one record In

the other file

All records that are compared with each other
are within a block
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One-to-one Matching

If both files have no duplication within them,
then it Is preferable to have output with each
record linked to no more than one record In

the other file

All records that are compared with each other
are within a block

Linear assignment algorithm used to find
optimal one-to-one matches within a block

USCENSUSBUREAU
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Linear Assignment Algorithm

For agreement weights in block

Bl BQ B3 Bn
A1 Wy Wi2 Wi3s Win
Az W91 W2 W23 Waon,
As w31 W32 W33 W3n
An Wp1 Wp2 W3 W
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Linear Assignment Algorithm

Find permutation & that maximizes

Z Wi o ()
i=1
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Linear Assignment Algorithm

Find permutation & that maximizes

Z Wi (i)
i=1

Not a greedy algorithm
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Linear Assignment Algorithm

Find permutation & that maximizes

Z Wi (i)
i=1

Not a greedy algorithm

Father 40 <« Mother 39
Mother 39 <« Daughter 16
Daughter 16 <+« Son 13

Son 13
USCENSUSBUREAU
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Error Rates

False Match Rate
p="Pr(L|U)=Pr(w(y) <T,|U)

USCENSUSBUREAU

Record Linkage: Theory and Practice — p. 104/134



Error Rates

False Match Rate
p="Pr(L|U)=Pr(w(y) <T,|U)

False Non-match Rate

A=Pr(N|M)=Pr(w(y)>T)|U)
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Practical Considerations

Question: Relative to what sample space?
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Practical Considerations

Question: Relative to what sample space?
- Ax B
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Practical Considerations

Question: Relative to what sample space?
- Ax B
- Pairs in blocking scheme
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Practical Considerations

Question: Relative to what sample space?
- Ax B
- Pairs in blocking scheme
- After 1-1 matching
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Practical Considerations

Question: Relative to what sample space?
- Ax B
- Pairs in blocking scheme
- After 1-1 matching

Each step presumably filters out a lot of
low-weight pairs

USCENSUSBUREAU



False Non-Match Rate

Difficult to determine as well as define
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False Non-Match Rate

Difficult to determine as well as define

May as well try to estimate number of
undiscovered matches in A x B
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False Non-Match Rate

Difficult to determine as well as define

May as well try to estimate number of
undiscovered matches in A x B

Can try capture-recapture using independent
blocking schemes
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False Match Rate I-




False Match Rate

Bellin-Rubin
Larsen
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False Match Rate

Bellin-Rubin
Larsen
Larsen, Rubin, Winkler
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Bellin-Rubin

Bellin, T.R. and Rubin, D.B. (1995) “A Method
for Calibrating False-Match Rates in Record

Linkage,” Journal of the American Statistical
Association, 90,pp.694—707.
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Bellin-Rubin

Bellin, T.R. and Rubin, D.B. (1995) “A Method
for Calibrating False-Match Rates in Record
Linkage,” Journal of the American Statistical

Association, 90,pp.694—707.
Consider sample space without 1-1 matching
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Bellin-Rubin

Bellin, T.R. and Rubin, D.B. (1995) “A Method
for Calibrating False-Match Rates in Record
Linkage,” Journal of the American Statistical
Association, 90,pp.694—707.

Consider sample space without 1-1 matching

Model as a mixture of 2 normal distributions
(Box-Cox)
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Bellin-Rubin

Bellin, T.R. and Rubin, D.B. (1995) “A Method
for Calibrating False-Match Rates in Record
Linkage,” Journal of the American Statistical
Association, 90,pp.694—707.

Consider sample space without 1-1 matching

Model as a mixture of 2 normal distributions
(Box-Cox)

M and U must be well-separated and
unimodal

USCENSUSBUREAU



Larsen

Larsen, M.D. “Hierarchical Bayesian Record
Linkage Theory,” lowa State University,
Statiistics Department Technical Report
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Larsen

Larsen, M.D. “Hierarchical Bayesian Record
Linkage Theory,” lowa State University,
Statiistics Department Technical Report

Estimate error rates with 1-1 matching
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Larsen

Larsen, M.D. “Hierarchical Bayesian Record
Linkage Theory,” lowa State University,
Statiistics Department Technical Report

Estimate error rates with 1-1 matching
Complicated restrained optimization
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Larsen

Larsen, M.D. “Hierarchical Bayesian Record
Linkage Theory,” lowa State University,
Statiistics Department Technical Report

Estimate error rates with 1-1 matching
Complicated restrained optimization
Metropolis-Hastings procedure

USCENSUSBUREAU
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Improved Parameter Estimates

Recall, if we had correct parameter values
(and model), under Fellegi-Sunter, error rates
are known
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Improved Parameter Estimates

Recall, if we had correct parameter values
(and model), under Fellegi-Sunter, error rates
are known

Improve parameter estimates using training
data
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Extended Likelihood Function

For unlabled sample space S and labeled
training data set 7', extended likelihood

function
1—\ A
L= ( H Pr (v (a,b))) ( H Pr (7 (a, b)))
S (a,b)€T
for0 < A <1
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Extended Likelihood Function

For unlabled sample space S and labeled
training data set 7', extended likelihood

function
1—\ A
L= ( H Pr (v (a,b))) ( H Pr (7 (a, b)))
S (a,b)€T
for0 < A <1

Estimate using EM
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Larsen, Rubin

Larsen, M.D. and Rubin, D.B. (2001) “Iterative
Automated Record Linkage Using Mixture
Models,” Journal of the American Statistical
Association 79, pp.32-41
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Larsen, Rubin

Larsen, M.D. and Rubin, D.B. (2001) “Iterative
Automated Record Linkage Using Mixture
Models,” Journal of the American Statistical
Association 79, pp.32-41

T I1s sample of pairs from the clerical review
region that have been clerically reviewed
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Winkler

Winkler, W.E. “Automatically Estimating
Record Linkage False Match Rates,” (2007)
http://www.census.gov/srd/www/byname.html
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Winkler

Winkler, W.E. “Automatically Estimating
Record Linkage False Match Rates,” (2007)
http://www.census.gov/srd/www/byname.html

T I1s sample of “pseudo-truth” data: pairs with
sufficiently high or sufficiently low weight
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Data Preparation

Files must have matching fields of fixed
length and location
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Data Preparation

Files must have matching fields of fixed
length and location

Matching fields are compared on a character
by character basis
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Data Preparation

Files must have matching fields of fixed
length and location

Matching fields are compared on a character
by character basis

Unnecessary inconsistencies must be
removed before matching is done
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Basic Preparation

Consistently encode categorical variables
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Basic Preparation

Consistently encode categorical variables
. Sex, race
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Basic Preparation

Consistently encode categorical variables
. Sex, race
- Date, age
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Basic Preparation

Consistently encode categorical variables
. Sex, race
- Date, age

Spelling standardization
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Basic Preparation

Consistently encode categorical variables
- Sex, race
- Date, age

Spelling standardization
- Titles: Dr, Dr., Doctor
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Basic Preparation

Consistently encode categorical variables

. Sex, race
- Date, age

Spelling standarc
. Titles: Dr, Dr.,
- Nicknames: BI

1zation
Doctor

|, William
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Basic Preparation

Consistently encode categorical variables
- Sex, race
- Date, age

Spelling standardization
- Titles: Dr, Dr., Doctor
- Nicknames: Bill, William

. Standard words: Co, Co., Cmpny,
Company

USCENSUSBUREAU



Basic Preparation, Cont.

ldentify and parse components
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Basic Preparation, Cont.

ldentify and parse components
- Names: last, first

USCENSUSBUREAU

Record Linkage: Theory and Practice — p. 116/134



Basic Preparation, Cont.

ldentify and parse components
. Names: last, first
. Addresses: number, street, unit

USCENSUSBUREAU
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Address Parsing

D
>

=
i

16 W Main ST APT 16
RR 2 BX 215

Fuller BLDG SUITE 405
14588 HWY 16 W
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Address Parsing

16 W Main ST APT 16
RR 2 BX 215

Fuller BLDG SUITE 405
14588 HWY 16 W

Pre2 Hsnm  Stnm RR Box Postl Post2 Unitl Unit2 Bldg
W 16 Main 16
2 215
405 Fuller
14588 HWY 16 W

=
|
¥
T3
==
e |

N | e | \I A
% =i i Fik Y
5 LY a0
A 9 L - 2 g O

Record Linkage: Theory and Practice — p. 117/134



Business LIsts



Business Lists

Much harder
May have fewer comparison fields
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Business Lists

Much harder

May have fewer comparison fields
- Name
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Business Lists

Much harder

May have fewer comparison fields
- Name
- Address
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Business Lists

Much harder

May have fewer comparison fields
- Name

- Address

- Phone
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Business Lists

Much harder

May have fewer comparison fields
- Name

- Address

- Phone

These may not be unique
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Business Lists

Much harder

May have fewer comparison fields
- Name

- Address

- Phone

These may not be unique
May be difficult to parse

USCENSUSBUREAU



Example of Business Name Parsing

DR John J Smith MD
Smith DRY FRM
Smith & Son ENTP
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Example of Business Name Parsing

DR John J Smith MD
Smith DRY FRM
Smith & Son ENTP

Pre First Mid Last Postl Post2 Busl Bus?2
D] John J Smith MD

Smith DRY FRM
Smith Son ENTP
USCENSUSEBEUREAU
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Two Kinds of Standardizer

Deterministic
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Two Kinds of Standardizer

Deterministic
. Rule based
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Two Kinds of Standardizer

Deterministic
. Rule based

Probabilistic
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Two Kinds of Standardizer

Deterministic
. Rule based

Probabilistic
. HiIdden Markov model
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Rule-Based Standardizer

U.S. Census Bureau software
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Rule-Based Standardizer

U.S. Census Bureau software
Based on extensive expert experience
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Rule-Based Standardizer

U.S. Census Bureau software
Based on extensive expert experience
Created for a specific sample space

USCENSUSBUREAU
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Hidden Markov Standardizer

Adaptable to different sample spaces
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Hidden Markov Standardizer

Adaptable to different sample spaces
Based on training data
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Hidden Markov Standardizer Referent

P. Christen, T. Churches, J.X. Jhu. (2002) “Probabilistic
Name and Address Cleaning and Standardization.”
The Australasian Data Mining Workshop.
http://datamining.anu.eedu.au/projects/linkage.html
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Hidden Markov Standardizer Referent

P. Christen, T. Churches, J.X. Jhu. (2002) “Probabilistic
Name and Address Cleaning and Standardization.”
The Australasian Data Mining Workshop.
http://datamining.anu.eedu.au/projects/linkage.html

T. Churches, P. Christen, J. Lu, J.X. Zhu. (2002)
“Preparation of Name and Address Data for Record
Linkage Using Hidden Markov Models.” BioMed
Central Medical Informatics and Decision Making, 2(9),
http://www.biomedcentral.com/1472-6947/2/9.
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Hidden Markov Standardizer Referent

P. Christen, T. Churches, J.X. Jhu. (2002) “Probabilistic
Name and Address Cleaning and Standardization.”
The Australasian Data Mining Workshop.
http://datamining.anu.eedu.au/projects/linkage.html

T. Churches, P. Christen, J. Lu, J.X. Zhu. (2002)
“Preparation of Name and Address Data for Record
Linkage Using Hidden Markov Models.” BioMed
Central Medical Informatics and Decision Making, 2(9),
http://www.biomedcentral.com/1472-6947/2/9.

FEBRL Project (Freely Extensible Biomedical Record
US (Likkeg§ USEUREAU
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Hidden Markov Model

ldentify a finite number of hidden Markov
states
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Hidden Markov Model

ldentify a finite number of hidden Markov
states

- first, lastl, last2, mi, prefix, suffix
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Hidden Markov Model

Ildentify a finite number of hidden Markov
states

- first, lastl, last2, mi, prefix, suffix

Use training data to assign transition
probabilities from one state to the next

USCENSUSBUREAU

Record Linkage: Theory and Practice — p. 124/134



Hidden Markov Model

ldentify a finite number of hidden Markov
states

- first, lastl, last2, mi, prefix, suffix

Use training data to assign transition
probabilities from one state to the next

Use training data to assign probabilities for
observations having given hidden state
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Hidden Markov Model

ldentify a finite number of hidden Markov
states

- first, lastl, last2, mi, prefix, suffix

Use training data to assign transition
probabilities from one state to the next

Use training data to assign probabilities for
observations having given hidden state

- Look-up lists
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Hidden Markov Model

ldentify a finite number of hidden Markov
states

- first, lastl, last2, mi, prefix, suffix

Use training data to assign transition
probabilities from one state to the next

Use training data to assign probabilities for
observations having given hidden state

- Look-up lists
. Coded rules

USCENSUSBUREAU



Hidden Markov Model, Cont.

Break object into component observations,
assign them initial Markov states
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Hidden Markov Model, Cont.

Break object into component observations,
assign them initial Markov states

- “sir”, “mick”, “jagger”, “mbe”
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Hidden Markov Model, Cont.

Break object into component observations,
assign them initial Markov states

- “sir”, “mick”, “jagger”, “mbe”
Compute the highest probability sequence of
hidden states for the given observations

USCENSUSBUREAU



Viterbi Algorithm

Not feasible to compute probabilities for all
possible paths O (n')
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Viterbi Algorithm

Not feasible to compute probabilities for all
possible paths O (n')

Dynamic programming algorithm O (nl)
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Viterbi Algorithm

Not feasible to compute probabilities for all
possible paths O (n')

Dynamic programming algorithm O (nl)

Each state is arrived at by the most probable
subpath (Markov property)
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HMM Diagram

A A
Start /@ -( End

C - C

“Sir” “miCk”
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Standardization Summary

Much more time is likely to be spent preparing
the data than performing the record linkage
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Standardization Summary

Much more time is likely to be spent preparing
the data than performing the record linkage

Records that fail to be standardized will
probably fail to be matched
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U.S. Census Bureau Software

Matching programs
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U.S. Census Bureau Software

Matching programs
- Matcher
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Matching programs
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- Counter
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U.S. Census Bureau Software

Matching programs
- Matcher
- Bigmatch

Auxiliary programs
- Counter
=
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U.S. Census Bureau Software

Matching programs
- Matcher
- Bigmatch

Auxiliary programs
- Counter

- EM

- Standardizer
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Matching Programs: Matcher

Matcher
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Matching Programs: Matcher

Matcher
. One-to-one matching
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Matching Programs: Matcher

Matcher

. One-to-one matching
» Files should not have duplicates
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Matching Programs: Matcher

Matcher

- One-to-one matching
» Files should not have duplicates

- Pre-sort files according to blocking scheme
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Matching Programs: Matcher

Matcher

- One-to-one matching
» Files should not have duplicates

- Pre-sort files according to blocking scheme
- Can re-run program on residual files
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Matching Programs: Matcher

Matcher

- One-to-one matching
» Files should not have duplicates

- Pre-sort files according to blocking scheme

- Can re-run program on residual files
» Resort files according to new blocking
scheme
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Matching Programs: Bigmatch

Bigmatch
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Matching Programs: Bigmatch

Bigmatch
- No one-to-one matching
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Matching Programs: Bigmatch

Bigmatch

- No one-to-one matching
» Can be used for deduplicating file
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Matching Programs: Bigmatch

Bigmatch

- No one-to-one matching
» Can be used for deduplicating file

- Do not pre-sort files
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Matching Programs: Bigmatch

Bigmatch

- No one-to-one matching
» Can be used for deduplicating file

- Do not pre-sort files
- Can run several blocking schemes
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Matching Programs: Bigmatch

Bigmatch

- No one-to-one matching
» Can be used for deduplicating file

- Do not pre-sort files
. Can run several blocking schemes
- Can match several files to one file
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Matching Programs: Bigmatch

Bigmatch

- No one-to-one matching
» Can be used for deduplicating file

- Do not pre-sort files

. Can run several blocking schemes
- Can match several files to one file
- One file must fit Into memory
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Auxiliary Programs: Counter

Counter program
. Simplified matching program

- Counts number of times each matching
pattern occurs

. String comparator has (high) cutoff
- Provides input for EM
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EM algorithm program
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Auxiliary Programs: EM

EM algorithm program

- Estimates probability parameters for given
file and blocking scheme
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Auxiliary Programs: EM

EM algorithm program

- Estimates probability parameters for given
file and blocking scheme

. Has 2-class and 3-class versions
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Auxiliary Programs, Standardizer

Standardizer
. Standardizes names and addresses
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Auxiliary Programs, Standardizer

Standardizer
. Standardizes names and addresses
- Rule-based parsing

USCENSUSBUREAU



	Introduction
	Introduction
	Introduction
	Introduction

	Definition
	Definition

	Terminology
	Terminology

	Uses
	Uses
	Uses
	Uses

	Capture-Recapture
	Capture-Recapture

	Capture-Recapture, Cont.
	Capture-Recapture, Cont.
	Capture-Recapture, Cont.

	Record Linkage Basics
	Record Linkage Basics
	Record Linkage Basics
	Record Linkage Basics
	Record Linkage Basics

	Context
	Context

	Deterministic Record Linkage
	Deterministic Record Linkage
	Deterministic Record Linkage

	Probabilistic Record Linkage
	Probabilistic Record Linkage

	Not Statistical Matching
	Not Statistical Matching
	Not Statistical Matching

	Need for Automated Record Linkage
	Need for Automated Record Linkage
	Need for Automated Record Linkage
	Need for Automated Record Linkage
	Need for Automated Record Linkage

	Rec. Link. Theory: Fellegi & Sunter
	Rec. Link. Theory: Fellegi & Sunter
	Rec. Link. Theory: Fellegi & Sunter
	Rec. Link. Theory: Fellegi & Sunter
	Rec. Link. Theory: Fellegi & Sunter
	Rec. Link. Theory: Fellegi & Sunter
	Rec. Link. Theory: Fellegi & Sunter
	Rec. Link. Theory: Fellegi & Sunter
	Rec. Link. Theory: Fellegi & Sunter

	Basic Definitions and Notation
	Basic Definitions and Notation
	Basic Definitions and Notation
	Basic Definitions and Notation
	Basic Definitions and Notation

	Basic Definitions and Notation
	Basic Definitions and Notation
	Basic Definitions and Notation
	Basic Definitions and Notation
	Basic Definitions and Notation

	Agreement Patterns
	Agreement Patterns
	Agreement Patterns
	Agreement Patterns

	Example Comparison Space
	Example Comparison Space
	Example Comparison Space
	Example Comparison Space
	Example Comparison Space

	Conditional Probabilities
	Conditional Probabilities
	Conditional Probabilities

	Linkage Rule
	Linkage Rule
	Linkage Rule
	Linkage Rule
	Linkage Rule

	Error Rates
	Error Rates
	Error Rates
	Error Rates
	Error Rates
	Error Rates

	Error Rates, Cont.
	Error Rates, Cont.

	Clerical Region
	Clerical Region

	Fundamental Theorem
	Fundamental Theorem
	Fundamental Theorem

	Fundamental Theorem, Cont.
	Fundamental Theorem, Cont.
	Fundamental Theorem, Cont.
	Fundamental Theorem, Cont.

	Fundamental Theorem, Cont.
	Fundamental Theorem, Cont.
	Fundamental Theorem, Cont.

	Fundamental Theorem, Cont.
	Fundamental Theorem, Cont.

	Weight Distribution for Matches
	Weight Distribution for Matches

	Weight Distribution for Non-Matches
	Weight Distribution for Non-Matches

	Idealized Distributions
	Idealized Distributions
	Idealized Distributions

	Error Rates, Clerical Review Region
	Error Rates, Clerical Review Region
	Error Rates, Clerical Review Region

	Conditional Independence Assumption
	Conditional Independence Assumption

	Cond. Indep. Assumption, Cont.
	Cond. Indep. Assumption, Cont.

	Cond. Indep. Assumption, Cont.
	Cond. Indep. Assumption, Cont.

	Cond. Indep. Assumption, Cont.
	Cond. Indep. Assumption, Cont.
	Cond. Indep. Assumption, Cont.
	Cond. Indep. Assumption, Cont.
	Cond. Indep. Assumption, Cont.
	Cond. Indep. Assumption, Cont.

	Cond. Indep. Assumption, Cont.
	Cond. Indep. Assumption, Cont.
	Cond. Indep. Assumption, Cont.

	Conditional Independence Example
	Conditional Independence Example

	Conditional Independence Example
	Conditional Independence Example

	Fellegi-Sunter Summary
	Fellegi-Sunter Summary
	Fellegi-Sunter Summary

	Record Linkage Methodology
	Record Linkage Methodology
	Record Linkage Methodology

	Choosing Parameters
	Choosing Parameters
	Choosing Parameters

	Informal Methods
	Informal Methods
	Informal Methods
	Informal Methods
	Informal Methods
	Informal Methods
	Informal Methods
	Informal Methods

	EM Algorithm
	EM Algorithm
	EM Algorithm
	EM Algorithm
	EM Algorithm

	Likelihood Function
	Likelihood Function

	Complete-data Likelihood Function
	Complete-data Likelihood Function

	Expectation Step
	Expectation Step

	Maximization Step
	Maximization Step

	Max Step, Cont.
	Max Step, Cont.

	Max Step, Cont.
	Max Step, Cont.
	Max Step, Cont.

	EM Algorithm
	EM Algorithm
	EM Algorithm
	EM Algorithm
	EM Algorithm

	EM Algorithm Remarks
	EM Algorithm Remarks
	EM Algorithm Remarks
	EM Algorithm Remarks

	EM Remarks, Cont.
	EM Remarks, Cont.
	EM Remarks, Cont.
	EM Remarks, Cont.
	EM Remarks, Cont.

	Blocking
	Blocking
	Blocking
	Blocking

	Blocking Criteria
	Blocking Criteria
	Blocking Criteria
	Blocking Criteria
	Blocking Criteria
	Blocking Criteria
	Blocking Criteria

	Record Linkage Refinements
	Record Linkage Refinements
	Record Linkage Refinements
	Record Linkage Refinements

	String Comparator
	String Comparator
	String Comparator

	String Comparator Context
	String Comparator Context

	String Comparator Context, Cont.
	String Comparator Context, Cont.

	Some String Comparator Types
	Some String Comparator Types
	Some String Comparator Types

	Bigrams
	Bigrams

	Bigrams, Cont.
	Bigrams, Cont.
	Bigrams, Cont.

	Bigrams, Cont.
	Bigrams, Cont.
	Bigrams, Cont.
	Bigrams, Cont.

	Jaro-Winkler Comparator
	Jaro-Winkler Comparator

	Jaro-Winkler Comparator, Cont.
	Jaro-Winkler Comparator, Cont.

	Jaro-Winkler Comparator, Cont.
	Jaro-Winkler Example
	Jaro-Winkler Example
	Jaro-Winkler Example

	Jaro-Winkler Example, Cont.
	Jaro-Winkler Example, Cont.

	Jaro-Winkler Variations
	Jaro-Winkler Variations
	Jaro-Winkler Variations

	Similar Characters
	Similar Characters
	Similar Characters
	Similar Characters

	Similar Characters, Cont.
	Similar Characters, Cont.

	Similar Characters, Cont.
	Common Prefix
	Common Prefix
	Common Prefix

	Long String Adjustment
	Long String Adjustment
	Long String Adjustment
	Long String Adjustment
	Long String Adjustment

	Long String Adjustment, Cont.
	Long String Adjustment, Cont.
	Long String Adjustment, Cont.
	Long String Adjustment, Cont.

	Long String Adjustment, Cont.
	Long String Adjustment, Cont.
	Jaro-Winkler Comparator
	Jaro-Winkler Comparator

	Edit Distance String Comparators
	Edit Distance String Comparators
	Edit Distance String Comparators
	Edit Distance String Comparators
	Edit Distance String Comparators

	Edit Distance Algorithm
	Edit Distance Algorithm

	Edit Distance Algorithm, Cont.
	Edit Distance Algorithm, Cont.

	Edit Distance Similarity Function
	Edit Distance Similarity Function

	Edit Distance Example
	Edit Distance Example
	Edit Distance Example

	Longest Common Subsequence
	Longest Common Subsequence

	LCS Similarity Function
	LCS Similarity Function

	Combination Similarity Function
	Combination Similarity Function
	Combination Similarity Function

	Evaluating String Comparators
	Evaluating String Comparators
	Evaluating String Comparators
	Evaluating String Comparators

	Evaluating String Comparators, Cont.
	Evaluating String Comparators, Cont.
	Evaluating String Comparators, Cont.
	Evaluating String Comparators, Cont.

	Evaluating String Comparators, Cont.
	Evaluating String Comparators, Cont.
	Evaluating String Comparators, Cont.
	Evaluating String Comparators, Cont.

	Evaluating String Comparators, Cont.
	Evaluating String Comparators, Cont.
	Evaluating String Comparators, Cont.
	Evaluating String Comparators, Cont.

	Results of String Comparator Evaluation
	Results of String Comparator Evaluation
	Results of String Comparator Evaluation
	Results of String Comparator Evaluation

	Results of String Comparator Evaluation, Cont.
	Results of String Comparator Evaluation, Cont.
	Results of String Comparator Evaluation, Cont.
	Results of String Comparator Evaluation, Cont.

	Jaro-Winkler Anomaly
	Jaro-Winkler Anomaly
	Jaro-Winkler Anomaly
	Jaro-Winkler Anomaly
	Jaro-Winkler Anomaly
	Jaro-Winkler Anomaly

	Hybrid Comparator
	Hybrid Comparator
	Hybrid Comparator
	Hybrid Comparator

	Hybrid Comparator, Cont.
	Hybrid Comparator, Cont.

	String Comparator Summary
	String Comparator Summary
	String Comparator Summary

	More Than Two Latent Classes
	More Than Two Latent Classes
	More Than Two Latent Classes
	More Than Two Latent Classes
	More Than Two Latent Classes
	More Than Two Latent Classes

	EM for Three Classes
	EM for Three Classes

	More Than Two Comparison Values
	More Than Two Comparison Values
	More Than Two Comparison Values
	More Than Two Comparison Values

	More Than Two Compr. Values, Cont.
	One-to-one Matching
	One-to-one Matching
	One-to-one Matching

	Linear Assignment Algorithm
	Linear Assignment Algorithm
	Linear Assignment Algorithm
	Linear Assignment Algorithm

	Error Rates
	Error Rates

	Practical Considerations
	Practical Considerations
	Practical Considerations
	Practical Considerations
	Practical Considerations

	False Non-Match Rate
	False Non-Match Rate
	False Non-Match Rate

	False Match Rate
	False Match Rate
	False Match Rate

	Bellin-Rubin
	Bellin-Rubin
	Bellin-Rubin
	Bellin-Rubin

	Larsen
	Larsen
	Larsen
	Larsen

	Improved Parameter Estimates
	Improved Parameter Estimates

	Extended Likelihood Function
	Extended Likelihood Function

	Larsen, Rubin
	Larsen, Rubin

	Winkler
	Winkler

	Data Preparation
	Data Preparation
	Data Preparation

	Basic Preparation
	Basic Preparation
	Basic Preparation
	Basic Preparation
	Basic Preparation
	Basic Preparation
	Basic Preparation

	Basic Preparation, Cont.
	Basic Preparation, Cont.
	Basic Preparation, Cont.

	Address Parsing
	Address Parsing

	Business Lists
	Business Lists
	Business Lists
	Business Lists
	Business Lists
	Business Lists
	Business Lists

	Example of Business Name Parsing
	Example of Business Name Parsing

	Two Kinds of Standardizer
	Two Kinds of Standardizer
	Two Kinds of Standardizer
	Two Kinds of Standardizer

	Rule-Based Standardizer
	Rule-Based Standardizer
	Rule-Based Standardizer

	Hidden Markov Standardizer
	Hidden Markov Standardizer

	Hidden Markov Standardizer Reference
	Hidden Markov Standardizer Reference
	Hidden Markov Standardizer Reference

	Hidden Markov Model
	Hidden Markov Model
	Hidden Markov Model
	Hidden Markov Model
	Hidden Markov Model
	Hidden Markov Model

	Hidden Markov Model, Cont.
	Hidden Markov Model, Cont.
	Hidden Markov Model, Cont.

	Viterbi Algorithm
	Viterbi Algorithm
	Viterbi Algorithm

	HMM Diagram
	Standardization Summary
	Standardization Summary

	U.S. Census Bureau Software
	U.S. Census Bureau Software
	U.S. Census Bureau Software
	U.S. Census Bureau Software
	U.S. Census Bureau Software
	U.S. Census Bureau Software
	U.S. Census Bureau Software

	Matching Programs: Matcher
	Matching Programs: Matcher
	Matching Programs: Matcher
	Matching Programs: Matcher
	Matching Programs: Matcher
	Matching Programs: Matcher

	Matching Programs: Bigmatch
	Matching Programs: Bigmatch
	Matching Programs: Bigmatch
	Matching Programs: Bigmatch
	Matching Programs: Bigmatch
	Matching Programs: Bigmatch
	Matching Programs: Bigmatch

	Auxiliary Programs: Counter
	Auxiliary Programs: Counter
	Auxiliary Programs: Counter
	Auxiliary Programs: Counter
	Auxiliary Programs: Counter

	Auxiliary Programs: EM
	Auxiliary Programs: EM
	Auxiliary Programs: EM

	Auxiliary Programs, Standardizer
	Auxiliary Programs, Standardizer
	Auxiliary Programs, Standardizer


