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AURKEZPENA

Nazioarteko Estatistika Mintegia antolatzean, hainbat helburu bete nahi ditu EUSTAT-
Euskal Estatistika Erakundeak:
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herrian zabaltzen laguntzeko.

Vitoria-Gasteiz, 2012ko Azaroa

JAVIER FORCADA SAINZ
EUSTATeko Zuzendari Nagusia

PRESENTATION

L’Institut Basque de Statistique se propose d atteindre plusieurs objectifs par la promotion
des Séminaires Internationaux de la Statistique:

- Encourager la collaboration avec I"Université et spécialement avec les départements de
la Statistique.
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avantage dans les rapports et I'échange d expériences.

En outre, il a été décidé de publier les exposés de ces rencontres afin d atteindre le plus
grand nombre de personnes et d'institutions intéresées, et pour contribuer ainsi a
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dorigine du conférencier sera respectée.

Vitoria-Gasteiz, Novembre 2012

JAVIER FORCADA SAINZ
Directeur General d” EUSTAT
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PRESENTACION

Al promover los Seminarios Internacionales de Estadistica, el EUSTAT-Instituto Vasco de
Estadistica- pretende cubrir varios objetivos:

- Fomentar la colaboracion con la Universidad y en especial con los Departamentos de
Estadistica.

- Facilitar el reciclaje profesional de funcionarios, profesores, alumnos y cuantos puedan
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- Traer a Euskadi a ilustres profesores e investigadores de vanguardia en materia
estadistica, a nivel mundial, con el consiguiente efecto positivo en cuanto a la relacion
directa y conocimiento de experiencias.

Como actuacion complementaria y para llegar al mayor nimero posible de personas e
Instituciones interesadas, se ha decidido publicar las ponencias de estos cursos, respetando

en todo caso la lengua original del ponente, para contribuir asi a acrecentar el conocimiento
sobre esta materia en nuestro Pais.

Vitoria-Gasteiz, Noviembre 2012
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Director General de EUSTAT
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Chapitre 1

Introduction : nécessité de la
prise en compte de la
dimension spatiale

Les données spatiales ou géoréférencées sont des données comportant une
dimension spatiale, c’est a dire pour lesquelles une information géographique
est attachée a chaque unité statistique. L’information géographique est en
général la position de l'unité sur une carte ou dans un référentiel spatio-
temporel et peut par exemple prendre la forme de latitude et longitude ou
de coordonnées UTM. Un traitement statistique de telles données qui ignore
cet aspect ou l'integre de facon inadéquate peut resulter en une perte d’in-
formation, des erreurs de spécifications, des estimations non convergentes et
non efficaces. En effet, il ne suffit pas de juxtaposer 'analyse géographique
a Panalyse statistique, il faut les faire interagir. Les systémes d’information
géographiques sont des outils sophistiqués qui permettent de faire de la car-
tographie professionnelle mais ils n’intégrent en général que des méthodes
statistiques élémentaires (histogrammes, camemberts). Les outils propres a
la statistique spatiale que nous allons exposer font intervenir la position spa-
tiale a part entiere dans leur définition.

Les domaines scientifiques privilégiés d’application de ces méthodes sont
I’économie, la géographie, la sociologie, I’épidémiologie, la géologie, la météo-
rologie. On trouve également des applications dans le secteur industriel avec
I'industrie pétroliere et dans le tertiaire avec le géomarketing. Voici quelques
exemples. En prospection pétroliere, il est utile de prédire la quantité de
pétrole potentielle en un lieu donné en fonction de prélevements effectués
en certains points répartis sur une zone pour optimiser ’emplacement des
forages. En économie urbaine, ’ajustement de modeles hédoniques qui ex-
pliquent le prix d’une transaction en fonction des caractéristiques du bien
immobilier mais aussi des caractéristiques socio-économiques ou autres de



leur lieu d’implantation permet de mieux comprendre ce qui influence le
marché immobilier. En aménagement du territoire, on peut vouloir étudier
la répartition spatiale des établissements scolaires et chercher a augmenter
Pefficacité du systeéme scolaire en choisissant au mieux le lieu d’implantation
de nouveaux établissements. En ce qui concerne ’environnement, la produc-
tion de cartes de prédiction de niveaux de pollution utilise les outils de la
géostatistique.

La distinction entre statistique spatiale et économétrie spatiale provient du
fait que traditionnellement, les techniques de statistique spatiale se sont
développées d’abord en géostatistique (au départ la statistique pour géologues)
et concernent des données de nature différente de celles étudiées en économie
comme nous le verrons en détail dans le chapitre suivant. Néanmoins on fait
souvent référence a la statistique spatiale pour désigner I’ensemble de ces
méthodes. Du point de vue historique, la géostatistique est née de 'indus-
trie miniere. L’ingénieur africain D.G. Krige s’est rendu célébre pour les
estimations de gisements d’or (1951) et a donné son nom & la méthode de
Krigeage. Ce domaine a ensuite été développé par ’école francaise de Fon-
tainebleau avec G. Matheron et ses collaborateurs.

Quelques manuels de référence dans ce domaine sont : N. Cressie (1993),
J. LeSage et K. Pace (2009) pour I’économétrie spatiale, Diggle (2003) et
Ilian et al. (2009) pour les semis de points et R. Bivand et al. (2008) pour
I'implémentation en R.

L’outil de modélisation des données géoréférencées est le champ aléatoire.
Lorsqu’une caractéristique X (s,w) d’une unité statistique est mesurée en la
position s pour la réalisation w, on notera X, la variable aléatoire associée,
ot1 I'indice s varie dans une partie D de R?. La dimension d varie de 1 & 3
dans les applications courantes.

1.1 Statistique spatiale et séries temporelles

Lorsque le champ aléatoire est indexé par un espace de dimension d = 1
on utilise, plutot que le terme de champ, le terme de processus ou de série
temporelle (le cas le plus fréquent étant celui ou la variable aléatoire est in-
dexée par le temps). L’étude des séries temporelles est un domaine en soi de
la statistique et il est clair qu’il ne s’agit en aucun cas d’un cas particulier
de la statistique spatiale (les ressemblances et différences seront signalées
dans le texte). Certains des outils exposés dans ce manuel concernent le cas
général de la dimension d supérieure a 1 mais c’est quand méme le cas d = 2
qui reste ’objectif principal.

Le parallele avec les séries temporelles est cependant intéressant. En effet, ce
qui distingue les séries temporelles d’autres modeles statistiques est la prise
en compte de la dépendance entre ’observation faite en un temps t et celle



faite en des temps voisins. Beaucoup de modeles supposent I'indépendance
entre les observations (mathématiquement parlant entre les variables aléatoi-
res associées) faites sur les diverses unités statistiques. Dans le cas d’obser-
vations temporelles, cette indépendance n’est pas une hypothese réaliste car,
dans beaucoup de phénomenes, ce qui se passe aujourd’hui est nécéssairement
influencé par ce qui s’est passé hier et dans une moindre mesure par un
passé lointain. Par ailleurs, dans le cas des séries temporelles, 'hypothese
de répartitions marginales identiques est aussi remise en question dans la
mesure ou le phénomene peut présenter une évolution en moyenne résultant
en une non stationarité. De la méme fagon, les champs aléatoires spatiaux
peuvent présenter a la fois
— une autocorrélation spatiale : les variables X et X; étant d’autant
plus corrélées que la distance entre s et ¢ est petite.
— une hétérogénéité spatiale : la répartition marginale de X, varie avec
s.
Mais a la différence des séries temporelles, les notions de passé et de futur
n’ont pas leur pendant en spatial et il n’y a pas d’ordre naturel dans R,

1.2 Bénéfices de la prise en compte de la dimen-
sion spatiale

Quels sont les avantages d’une modélisation adaptée aux données spa-
tiales 7 Que perd-on si on ne la fait pas? Dans le contexte d’un modele
de régression, on verra plus loin dans le document que si le processus de
génération des données suit un modele spatial alors que le statisticien uti-
lise un modele ordinaire en faisant abstraction des effets spatiaux, cela peut
résulter, selon le type de processus spatial concerné, en la présence de biais
dans les coefficients de la régression, d’une absence de convergence car ce
biais n’est pas nécéssairement asymptotiquement nul, d’une inefficacité des
estimations. L’absence d’impacts indirects (effet du changement d’une va-
riable en un lieu donné sur les autres lieux) dans le modele ordinaire peut
masquer de réels effets de débordement. De plus cela entraine aussi d’im-
portants biais de prédiction.

Pour illustrer le biais d’estimation des coefficients, nous prenons ici comme
exemple le découpage administratif de la région Midi-Pyrénées en 283 pseudo-
cantons. On considerera qu’une unité spatiale est voisine d’une autre si les
unités spatiales partagent une frontiere commune. On observe sur ces 283
unités une variable X simulée selon une loi N'(x = 40,0 = 10). Considérons
le modele LAG qui sera présenté dans le chapitre 7

Y = pWY + BX +e,

ol € est un bruit blanc spatial et WY désigne le vecteur des moyennes de



la variable Y dans le voisinage de chaque unité spatiale. La figure suivante
représente une exemple de simulation de Y a partir de :

Y =(I—pW)"(BX +e),

en prenant p = 0.95, 8 = 50 et e simulée selon une loi N(u = 40,0 =
10). Nous avons également représenté les liens de voisinage entre les unités
spatiales.

- 43000

- 42000

F 41000

- 40000

F 39000

- 38000

- 37000

- 36000

FIGURE 1.1 — A gauche la variable Y simulée avec p = 0.95. A droite les
liens de voisinage entre unités spatiales.

Pour différentes valeurs de p, nous avons calculé le biais d’estimation du
coefficient 5 donné, comme on le verra dans le chapitre 7, par :

(X' X)) 1X'(I - pW)1X —1,

et la différence entre la variance de B estimée dans le modele LAG et dans
le modele linéaire non spatial ordinaire donnée par

(X' X)IX((I = pW)' (I = pW)) 71X — 1,

Ces quantités sont représentées respectivement en bleue et en rouge dans le
graphique suivant en fonction de p.

Enfin, pour juger de I'hétéroscédasticité présente dans ce modele spatial,
nous avons représenté pour différentes valeurs de p, la distribution des
éléments de la partie triangulaire supérieure de la matrice de variance de
Y dans ce modele, donné a facteur d’échelle pres par :

(I = pW)'(I = pW))~
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FIGURE 1.2 — Biais dans le modele LAG en fonction de p. Différence entre
variances estimées dans les modeles LAG et OLS
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FIGURE 1.3 — Hétéroscédasticité



1.3 Rudiments de cartographie

Les données spatiales attachées a une position sur notre globe terrestre

sont généralement représentées dans un plan. Avant de réaliser leur étude
statistique, il est nécéssaire de les importer dans un logiciel d’analyse statis-
tique. Pour importer et analyser une telle base de données, il y a cependant
un minimum de connaissance cartographique a avoir. Tout d’abord, la sur-
face réelle de la terre dite géoide est de forme patatoide; on 'approxime
par un ellipsoide et il y a plusieurs approximations possibles (par exemple
ellipsoide de Clarke). Pour dessiner une carte il faut un systeme de coor-
données : des axes et une origine. De plus, comme la terre n’est pas plate, il
faut choisir un systeme de projection cartographique. Cette projection est
une correspondance entre les coordonnées planimétriques X et Y d’un point,
mesurées sur une grille réguliere, et sa latitude ¢ et longitude A. La latitude
est une mesure de 'angle ¢ par rapport a I’équateur, la longitude est une
mesure de 'angle A par rapport au méridien de référence. Il existe différentes
unités pour mesurer ces angles : degrés-minutes-secondes, degres-décimaux,
radians, grades. Au besoin, l'altitude du point est mesurée au dessus du
géoide ou du niveau local zéro des mers. La projection est la méthode de
réduction de la distorsion due a la rotondité de la terre appliquée sur une
surface plate. On distingue plusieurs sortes de projections : conique, cy-
lindrique, azimutale. Les projections les plus courantes sont : la projection
de Mercator, la projection Lambert et la projection de Mercator Univer-
selle. Un datum géodésique est la donnée d’un ellipsoide et d’un systeme de
projection : citons par exemple pour 'Europe le datum ED50, systeme eu-
ropéen unifié. Des logiciels de conversion permettent de passer d’un systeme
a lautre.
Pour illustrer les difficultés rencontrées, prenons un exemple. Dans le systeme
WGS 84 (World Geodetic System 1984, systeme géodésique mondial, révision
de 1984), les coordonnées longitude/latitude de la ville de Vitoria Gas-
teiz sont (2°41’0”W, 42°51°00”N) en degrés-minutes-secondes et (-2.683333",
42.85%) en degrés-décimaux. Le CRS (systeme de coordonnées de référence)
précise le systéeme de projection (proj=) ainsi que lellipsoide considéré
(ellps=). Dans notre exemple, le CRS s’écrit :

CRS("+proj=longlat ellps=WGS84").

Il est absolument essentiel de connaitre le CRS d’un fichier de données
spatiales. En effet, lorsqu’on travaille avec plusieurs sources de données,
il est rare que les unités spatiales soient exprimées dans un méme CRS.
Par exemple, dans la Figure (1.3), les contours de la province d’Alava sont
exprimés dans le CRS("+proj=lcc +ellps=WGS84") (projection Lambert
Conformal Conic) alors que les coordonnées de la ville de Vitoria Gasteiz
sont exprimées dans le CRS("+proj=merc ellps=WGS84") (projection Mer-
cator).

Les SIG (Systéeme d’'Information Géographique) sont souvent munis d’outils



#itoria Gasteiz is not an island !
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FIGURE 1.4 — Exemple de probléme rencontré lorsque les CRS ne corres-
pondent pas.

permettant la conversion d’unités spatiales d’'un CRS vers un autre CRS.
Dans la Figure (1.3), nous avons représenté la province d’Alava dans deux
CRS différents :

CRS("+proj=longlat ellps=WGS84") et

CRS("+proj=utm ellps=WGS84") (projection Universal Transverse Mer-
cator).
L’avantage avec la projection UTM est que les coordonnées sont exprimées
en metres et le calcul de distance entre deux points est ainsi facilité. Le
package rgdal dans le logiciel R permet d’effectuer ces transformations.

1.4 Exemple de lecture d’un jeu de données spa-
tiales avec R

Les fichiers de données spatiales sont :

— de type vectoriel, comme les fichiers Shapefile (avec une extension
.shp) ou Maplnfo (extension .MIF, .MID). L’unité spatiale de référence
peut étre assimilée a un point, un polygone ou un vecteur. Les unités
spatiales peuvent étre associées a des attributs. Dans le cas de données
statistiques, ces attributs seront des variables (quantitatives ou quali-
tatives) observées sur les unités spatiales.

— de type raster, comme les fichiers au formats .bmp, .jpeg, .tiff, .asc.
Dans ce cas, I'unité spatiale de référence est le pixel. En parlant de
pixel, on pourra également utiliser le terme de cellule ou carreau. Une
cellule peut étre associée a une (ou plusieurs) valeur(s) visualisée par
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FIGURE 1.5 — Représentation de la région de Vitoria dans deux CRS
différents.

la couleur.

a. Format vectoriel

Format ESRI shapefile

C’est le format de référence d’import /export pour des données géographiques
(ESRI=FEnvironmental Systems Research Institute). Un ESRI shapefile est
formé de :

— un fichier principal (.shp) qui contient toute l'information liée & la
géométrie des objets décrits qui peuvent étre : des points, des lignes
ou des polygones;

— un fichier (.shx) qui stocke 'index de la géométrie;

— un fichier dBASE (.dbf) pour les données attributaires (ou données
statistiques) ;

— des fichiers facultatifs comme un fichier sur les datums/projections
(-prj)-

Dans le code R ci-dessous, le chargement de la librairie sp permet d’utiliser
les classes d’objet Spatial et la librairie maptools permet I'importation
de fichiers spatiaux. La commande CRS("+init=epsg:4326") de la fonc-
tion readShapeSpatial () permet d’indiquer le systeme géodésique utilisé.
Il s’agit ici d’une simplification du CRS("+proj=longlat +ellps=WGS84)
que nous avons vu précédemment. Le fichier correspond au découpage ad-
ministratif des régions européennes utilisé dans le cadre de la législation
européenne et représentées ici par le centroide de la région.

> library("sp")
> library("maptools")
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> xx <- readShapeSpatial("NUTS_LB_2010.shp", CRS("+init=epsg:4326"))
> class(xx)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

xx est un objet de classe SpatialPointsDataFrame. Cela signifie que :
— les unités spatiales sont des points appartenant a la classe d’object
SpatialPoints.
— chaque point est associé a des attributs inclus dans un objet data.frame.
Pour représenter ’objet xx :

> plot(xx,axes=TRUE)
> title("NUTS-2010 region centroids")

NUTS-2010 region centroids

60°N

40°N

20°N

=

2008

FIGURE 1.6 — Représentation des centroides des zones NUTS (Nomenclature
of territorial units for statistics).

Pour savoir le nombre d’unités spatiales et le nombre de variables observées :

> dim(xx)
[1] 1921 4

Pour afficher les attributs des premieres unités spatiales :

> head(xx@data)
NUTS_ID LAT LON STAT_LEVL

0 EL111 41.11184 26.11046 3
1 EL112 41.16937 24.82273 3
2 EL113 41.10678 25.50045 3
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3 EL114 41.28699 24.18505 3
4 EL115 40.82641 24.33590

5 EL121 40.49527 22.26628 3
> plot (xx,axes=TRUE)

> title("NUTS-2010 region centroids")

w

Format MaplInfo

Pour importer un fichier MaplInfo, on utilisera la fonction read0GR () du
package rgdal (qui peut aussi étre utilisé pour importer un fichier Shapefile)
de la facon suivante :

> xy <- readOGR("departements_region.mif","departements_region")
OGR data source with driver: MapInfo File

Source: "departements_region.mif", layer: "departements_region"
with 98 features and 7 fields

Feature type: wkbPolygon with 2 dimensions

> class(xy)

[1] "SpatialPolygonsDataFrame"
attr(, "package")

[1] "Sp"

Ici la classe SpatialPolygonsDataFrame indique qu’une unité spatiale est
représentée par un polygone. Il s’agit ici du découpage administratif de la
France en départements. Parmi les attributs disponibles pour cet objet, on
dispose de la population frangaise en nombre d’habitants. Il est possible de
représenter ainsi une carte choroplethe en utilisant le code suivant :

> plotclr <- c("#EFF3FF", "#BDD7E7", "#6BAED6", "#3182BD", "#08519C")
> breaks<-quantile(xy@data$PSDC,c(0,0.2,0.4,0.6,0.8,1))

> plot(xy,col=plotclr[findInterval (xy@data$PSDC, breaks,
all.inside=TRUE)], border=’grey’)

> legend("topleft", legend = c("[29972,230296.0[","[29972,351983.8[",
[351983.8,554093.4[", "[554093.4,966320.0[","[966320.0,2554449.0]1"),
title = "Nombre d’habitants",fill=plotclr,cex=0.7)

b. Format raster

Nous allons ici importer un fichier .asc & I’aide de la fonction readAsciiGrid ()
du package maptools.
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Nombre d'habitants
[29972,230296.0[
[28872,351983.8]
[351983 8,554093 4
[5540532.4,966320.0]
[966320.0,25544485.0}:

FiGURE 1.7 — Carte choroplethe de la taille de la population dans les
départements frangais.
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> gr <- readAsciiGrid("pvgis_gl3year00.asc")
> proj4string(gr)=CRS("+proj=longlat +ellps=WGS84")

> class(gr)

[1] "SpatialGridDataFrame"
attr(, "package")

[1] "Sp"

L’avantage d’un objet de classe SpatialGridDataFrame est que sa structure
n’est pas complexe. En effet, il suffit de connaitre le nombre de cellules
(Nrow X Mo ), la taille d’une cellule (exprimées dans un CRS donné) et enfin
les coordonnées de la cellule de référence (ou 'origine). Les valeurs associées
aux cellules peuvent ensuite étre stockées dans un vecteur de taille 1,y X Mol
sachant que le premier élément du vecteur correspond a la valeur observée
a lorigine. Ici, I'image représente le temps d’ensoleillement annuel moyen
observé en Europe. Pour représenter I'image :

> spplot(gr,axes=TRUE)

1800

1600

1400

1200

1000

- 800

- 600

FIGURE 1.8 — Représentation d’un fichier de type raster représentant la durée
d’ensoleillement annuel moyen.
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1.5 Etapes d’une analyse spatiale

Comme dans toutes les études statistiques, ’analyse d’un jeu de données
spatial commence par une étude exploratoire. Le but de cette étude, en
sus des objectifs classiques tels que repérer les valeurs manquantes et aty-
piques, établir un premier résumé unidimensionnel de chaque variable, est
ici d’explorer l'existence de tendances et d’autocorrélations spatiales. Si
celles-ci sont mises en évidence, le reste de 'analyse s’attachera a corri-
ger de ’hétérogénéité d’une part et de 'autocorrélation de I'autre de fagon
que 'analyse des impacts des facteurs explicatifs ainsi que les prédictions
éventuelles soient les plus efficaces possible.
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Chapitre 2

Divers types de données
spatiales

On distingue trois grands types de données géoréférencées : les données
ponctuelles ou de type géostatistique, les données surfaciques ou de type
économeétrie spatiale et les données de type semis de points. Ils différent
d’abord par la nature de I'unité géographique attachée a chaque unité sta-
tistique, soit un lieu précis soit une surface, mais aussi par la qualité aléatoire
ou non des positions spatiales. Avant de décrire ces types plus précisément,
notons qu’il existe d’autres types moins répandus comme par exemple les
données bilocalisées ou données de flux ou chaque caractéritique se rapporte
a un couple de sites. Notons qu’il existe aussi des données spatiales de type
image pour lesquelles une ou plusieurs caractéristiques sont attachées a des
pixels. Celles-ci peuvent justifier de traitements adaptés aux deux premiers
types ci-dessous mais également a des traitements spécifiques au traitement
d’image que nous n’aborderons pas dans ce document.

2.1 Données de type géostatistique ou ponctuelles

Les données de type géostatistique sont tout d’abord telles que la posi-
tion observée n’est pas modélisée comme aléatoire car elle est choisie par le
statisticien. Par exemple, un jeu de données météorologiques va étre observé
sur une collection de stations météo, des données de pollution atmosphérique
sur une collection de lieux ou 'on a implanté des appareils de mesure. Par
ailleurs, I'unité géographique associée a la donnée est ici ponctuelle : on peut
repérer la latitude et longitude des stations météo ou des appareils de me-
sure. Plus formellement, pour le champ aléatoire servant a modéliser notre
phénomene, l'espace des indices sera un domaine D de R? contenant un
rectangle de volume strictement positif et I'indice s varie donc continument
dans cet espace. Par contre, dans la pratique, les observations du champ sont
faites en un nombre fini de points déterministes s; de D. Ceux-ci peuvent
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dans certains modeles constituer une grille réguliere mais ce n’est pas le cas
en général.

2.2 Données de type économétrie spatiale ou sur-
faciques

De méme que pour les données de type géostatistique, pour les données
de type économétrie spatiale ou surfaciques, la position observée n’est pas
modélisée comme aléatoire. Par contre, I'unité géographique associée a la
donnée est ici de nature surfacique. Le territoire observé est partitionné en
zones sur lesquelles le phénomene est observé. C’est le cas pour la majeure
partie des données économiques qui sont mesurées sur des découpages admi-
nistratifs du territoire comme par exemple le taux de chomage ou le revenu
moyen par foyer fiscal d’'une commune ou d’un département. L’indice s du
champ aléatoire varie alors dans un nombre fini de localisations qui sont
généralement les centroides des zones ou leurs représentants administratifs.

2.3 Données de type semis de points

Dans ce dernier cas, la localisation de la donnée est modélisée comme
aléatoire car elle n’est pas choisie par le statisticien mais par le phénomene.
Par exemple, supposons que 'on observe 1’évolution d’une forét et que 1’on
enregistre la localisation des arbres. Nous sommes alors en présence d'un
semis de points et il y a une variable aléatoire bidimensionnelle pour chaque
observation qui est la localisation de ’arbre exprimée par ses coordonnées
dans un repere. Supposons que de plus on enregistre aussi le diametre et le
nombre de leurs feuilles de chaque arbre. On a alors un processus ponctuel
marqué : il y a trois variables aléatoires pour chaque observation qui sont la
localisation d’une part et le diametre et le nombre de feuilles d’autre part.
Ces deux dernieres sont les marques aléatoires associées a cette localisation.
On utilise la théorie des processus ponctuels pour modéliser les répartitions
aléatoires de points. Ces points sont généralement inclus dans R? avec d
entier > 1 mais nous considérerons plus simplement le cas le plus courant ot
d = 2. Les domaines classiques d’application de ces modeles sont la géologie,
I’écologie, ’étude des foréts. Donnons quelques exemples : la disposition de
certaines especes végétales dans une forét, les emplacements des épicentres
de secousses sismiques enregistrées, la localisation de trésors archéologiques
retrouvés sur un site, les adresses de patients affectés d’une certaine maladie
dans une région, la répartition de cellules dans un tissu biologique, .. ..
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Chapitre 3

Spécificité des données
spatiales : hétérogénéité et
autocorrélation

3.1 Considérations de modélisation

Que ce soit pour des données ponctuelles ou pour des données surfa-
ciques, nous allons utiliser une méme notation pour simplifier. On parlerons
d’un champ X, observé en des localisations sq,--- , s,. Lorsque les données
sont ponctuelles, X désignera la variable aléatoire de la caractéristique au
point s et lorsque les données sont surfaciques, X désignera la variable
aléatoire de la caractéristique dans 'unité spatiale dont le représentant est
s. Lorsqu’on utilise un modele mathématique de champ aléatoire pour un
phénomene observé spatialement, la loi du champ X, est caractérisée par

— les lois marginales de X pour chaque localisation s

— les lois conjointes de vecteurs X, ,---, X, pour un ensemble fini de

localisations s1,--- , sp
On imagine donc que, pour un lieu s donné, il existe un univers de réalisations
possibles de la caractéristique X mais dans la réalité on observe généralement
une seule réalisation de X et ce pour un nombre fini de sites s. Par exemple
si la donnée est un ensemble de niveaux de pluie mesurés en des stations
météo a un instant donné, pour chaque station s, on dispose d’une réalisation
de la variable “volume de pluie en s”. On a une pluralité de données due a
une pluralité de lieux mais non & une pluralité de réalisations sauf si on est
dans le cas d’observations répétées. Dans ce dernier cas, il s’agit en général
d’observations répétées au cours du temps. Cette dimension temporelle bien
str pourrait induire la nécéssité d’utiliser un champ spatio-temporel et c’est
un domaine de recherche tres actif de nos jours, mais nous avons choisi de
ne pas le développer ici. Par contre, pour un lieu donné s, si I’on est prét a
considérer une homogénéité temporelle du phénomene ainsi qu’une absence
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de dépendance temporelle, on peut considérer que ’on dispose de plusieurs
observations i.i.d. d’une méme variable aléatoire X . Le fait que ’on dispose
le plus souvent que d’une seule observation (coupe transversale) pourrait
décourager le statisticien débutant de faire la moindre inférence. La solution
est de puiser des forces dans la continuité spatiale du phénomene et dans la
corrélation entre lieux voisins pour rendre cette inférence possible.

On suppose que le champ X admet un moment d’ordre un fini : E(X;) < oc.
On décompose alors le champ aléatoire en deux parties de la fagon suivante

Xs = E(Xs) + (Xs - E(Xs))

Le terme déterministe E(X) s’appelle la tendance et modélise les varia-
tions a grande échelle du phénomene décrit par ce champ. Il représente la
valeur moyenne du champ (valeur théorique que 'on pourrait estimer par
exemple si l'on disposait de plusieurs réalisations temporelles de Xj). Le
terme aléatoire (X; — E(X;)) s’appelle la fluctuation et modélise les varia-
tions du champ a petite échelle. Notons que la fluctuation a une moyenne
nulle par construction. Une décomposition similaire existe en séries tem-
porelles. Dans la pratique cependant, cette décomposition en deux termes
pour un phénomene observé n’est bien stir pas unique, et c’est le choix du
modélisateur d’affecter certains aspects a la partie aléatoire ou a la par-
tie déterministe. Une coupe transversale ne permet pas de différencier, en
présence d’un agrégat de résidus élevés, entre une hétérogénéité avec une
forte tendance dans le voisinage de 'agrégat, et une autocorrélation spatiale
positive. Pour comprendre ce découpage, il est bon de penser a une mon-
tagne : le détail de la variation de I’élévation mesuré avec précision constitue
le champ ; on peut penser a I’allure de la montagne vue d’avion telle qu’elle se
découpe sur ’horizon comme a une tendance ; la différence entre 1’élévation
précise et cette tendance représente alors les accidents de terrain visibles de
pres.

Dans le cas des modeles de régression ou il y aura a la fois une variable
dépendante Y; et des variables explicatives X, nous raisonnerons condi-
tionnellement & ’observation des variables explicatives.

3.2 Hétérogénéité spatiale

L’hétérogénéité des données spatiales se traduit par le fait que la répartition
marginale du champ aléatoire X, varie avec la localisation s. On dit qu’il
y a une tendance lorsque E(Xj) est non constante dans l'espace : on dit
aussi que la moyenne est non stationnaire. Si 'on mesure par exemple la
quantité de précipitations sur des stations météo, il parait naturel de penser
que le nombre moyen de centimetres cubes de pluie par semaine a Tou-
louse est différent de celui observé a Brest. Il s’agit 1a d’une différence sur
la moyenne, mais on peut aussi imaginer qu’il y a une plus forte variabilité
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FI1GURE 3.1 — Tendance et Fluctuation.

d’une semaine a 'autre & Brest qu’a Toulouse ou que les valeurs extrémes
sont tres différentes. L’ensemble de la distribution des centimetres cubes de
pluie par semaine a des raisons d’étre spécifique du lieu.

L’hétérogénéité spatiale sera prise en compte par 1'usage de variables ex-
plicatives pour modéliser la tendance. Certaines de ces variables peuvent
étre spatiales de nature comme, par exemple, la distance a certains lieux
d’intérét pour le probleme. Mais notons cependant qu’il n’est pas suffisant
de prendre en compte ces variables dans la moyenne pour évacuer totalement
la structure spatiale du probleme qui peut rester présente a ’ordre deux.

3.3 Autocorrélation spatiale

Une citation célebre de Tobler (1979) est Everything is related to every-
thing else but closer things more so.
Si la tendance est spécifique au moment d’ordre un d’un champ, 'auto-
corrélation concerne le moment d’ordre deux que ’on supposera exister dans
ce paragraphe : on dit alors que le champ est du second ordre.
Pour les données spatiales, une corrélation peut se produire entre X, et
X, du fait de leur proximité géographique. De facon qualitative, on parle
d’autocorrélation spatiale positive pour une variable lorsqu’il y a regroupe-
ment géographique de valeurs similaires de la variable. De méme, on parle
d’autocorrélation spatiale négative pour une variable lorsqu’il y a regroupe-
ment géographique de valeurs dissemblables de la variable. Enfin, on parle
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F1GURE 3.2 — Types d’autocorrélation.

d’absence d’autocorrélation pour une variable lorsqu’il n’y a pas de relation
entre la proximité géographique et le degré de ressemblance des valeurs de la
variable. Prenons pour illustrer cette notion ’exemple d’un champ dichoto-
mique a valeurs 0 ou 1 représentées respectivement par les couleurs blanche
et noire et constant sur les carrés d’une grille réguliere. Comme on le voit
sur la Figure 3.2, si le champ ne présente pas d’autocorrélation (a droite),
une représentation graphique du champ montre des carrés blancs et noirs
répartis au hasard. Si le champ présente une autocorrélation spatiale posi-
tive (& gauche), on verra des amas de carrés blancs et des amas de carrés
noirs. Si le champ présente une autocorrélation spatiale négative (au centre),
les carrés blancs auront souvent des voisins noirs et inversement.

Cette notion présentée ci-dessus de maniere intuitive va se traduire par des
propriétés du champ aléatoire portant sur I'ordre 2, c’est a dire sur la struc-
ture de covariance. La structure de covariance d’un champ du second ordre
est définie par la fonction d’autocovariance

R(s,t) = Cov(Xs, Xy).

Pour modéliser un tel champ, une des hypotheses simplificatrices que ’on est
souvent amené a faire sur sa structure de covariance est celle de la station-
narité. La stationnarité stricte ou forte d’'un champ suppose que la loi du

vecteur Xy, ,..., X, est invariante par translation quel que soit le nombre
de points k et quelles que soient leurs positions si,...s; i.e. Xg,,..., X, a
méme loi que X, 14, ..., Xs, +n quel que soit h € R,

Une notion plus faible porte sur les deux premiers moments du champ. Un
champ aléatoire X, a valeurs réelles du second ordre est dit stationnaire
au second ordre ou au sens faible s’il existe un vecteur ;4 € R et une
fonction R : R? — R dite fonction d’autocovariance tels que

E(X,) = p (3.1)

Cov(Xs, Xsyp) = R(h) (3.2)
Notons que, dans ce cas, la fonction d’autocovariance est une fonction d’une
variable au lieu de deux. Il est clair que la stationnarité forte implique la

stationnarité faible. Dans le cas gaussien, ces deux notions sont équivalentes
puisque les moments d’ordre un et deux déterminent la distribution. Par la
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suite le terme de stationnarité (sans précision) sera synonyme de stationna-
rité faible.

Les fonctions d’autocovariance peuvent étre caractérisées par la propriété
mathématique suivante. Une fonction R(s,t) de R? & valeurs dans R est une
fonction d’autocovariance d’un champ aléatoire réel du second ordre si et
seulement si elle est de type positif c’est a dire que quels que soit I'entier k,

quels que soient les k sites s1,...,s; et les réels ay,...,ag, on a
ko k
E E aiCLjR(SZ',Sj) Z 0.
i=1 j=1

Une fonction R(s) de R & valeurs dans R est une fonction d’autocovariance
d’un champ aléatoire réel stationnaire du second ordre si et seulement si
elle est de type positif ce qui signifie dans ce cas que la fonction de deux
variables (s,t) — R(s—t) est de type positif. Notons que le vocabulaire “de
type positif” est le méme mais qu’il s’applique dans un cas & une fonction
de deux variables et dans I'autre a une fonction d’une variable.

3.4 Notion d’homogénéité et d’interaction spatiale
pour les semis de points

Dans le cas des semis de points, sans aborder les notions mathématiques

précises, que nous verrons apres avoir introduit le modeéle, essayons de définir
les notions d’homogénéité et d’interaction pour un processus non marqué.
La notion d’homogénéité est une notion d’ordre un : il s’agit de savoir si
le nombre moyen de points par unité de surface est constant au travers du
domaine. L’outil nécéssaire a son étude est I'intensité du processus.
La notion d’interaction est une notion d’ordre deux : il s’agit de savoir si
le nombre (aléatoire) de points N(A) dans une partie de l'espace A est
dépendant ou indépendant (de fagon probabiliste) du nombre de points
N (B) dans une autre partie B disjointe de A. Les phénomeénes qui présentent
de I'attraction ou de la répulsion entre les points comportent une dépendance
entre N(A) et N(B). Par exemple, les positions d’animaux sur un territoire
présentent de la répulsion en raison de la compétition pour la nourriture. Les
positions de personnes atteintes d’une maladie épidémique vont au contraire
montrer de 'attraction en raison de la contagion.
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Chapitre 4

Outils statistiques pour
données spatiales

Nous introduisons dans ce chapitre les outils spécifiques nécéssaires a
I’étude des données spatiales. Le variogramme introduit dans le premier
paragraphe est plutot un outil de géostatistique pour la modélisation de la
structure de covariance alors que les matrices voisinage et indices de Moran
sont des outils pour les données de type surfacique. Le package “spdep” de
R par R. Bivand permet de mettre en oeuvre les outils qui sont orientés vers
les données surfaciques. Pour les données ponctuelles, on utilisera plutot les
packages “gstat”, “geoR” et “geoRglm”. Enfin le package “SpatStat” permet
de modéliser les semis de points.

4.1 Variogramme pour variable ponctuelle conti-
nue

4.1.1 Variogramme théorique

La stationnarité est souvent une hypothese trop forte dans les appli-
cations et une fagon de l'affaiblir est de considérer la stationnarité in-
trinséque. On n’exige pas l'existence d’'un moment d’ordre un pour le
champ lui-méme mais seulement pour les accroissements du champ et 1’on
demande que

E(Xsinp —Xs)=0 (4.1)

Var(Xeen — Xs) = 27(h) = B(Xopp — X,)? (4.2)

La fonction « s’appelle alors le semi-variogramme et 2y le variogramme.
Dans le cas ou le champ est stationnaire (donc nécessairement intrinsequement

stationnaire), il existe la relation suivante entre variogramme et fonction
d’autocovariance
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Var(Xsin — Xs) = Var(Xgypn) + Var(Xs) — 2Cov(Xs, Xeip)
= 20% - 2R(h)
= 2y(h)

Le variogramme est donc un outil de description de la structure de cova-
riance : on peut le définir pour une série temporelle mais il est peu utilisé
dans ce contexte. Nous allons décrire a présent plusieurs aspects importants
d’un variogramme, comme son comportement au voisinage de 1’origine et a
Iinfini qui nous renseignent sur les propriétés du champ.

Remarquons d’abord que «(0) = 0. On dit qu’'un champ est continu en
moyenne quadratique si

li h) = 0.
im 7 (h) =0

Cette condition équivaut a la continuité de la fonction d’autocovariance dans
le cas stationnaire (dans le cas non stationnaire, cela équivaut a la continuité
de la fonction de deux variables R(s,t) = Cov(Xs, Xs44) sur la diagonale).
Si par contre

lim ~y(h) =
am, 1) = co 70

alors ¢g est appellé effet de pépite (“nugget effect” en anglais) et témoigne
d’un champ plus irrégulier. Les Figures 4.1 et 4.2 illustrent ces deux types
de comportement pour un modele de variogramme dit exponentiel défini par

o(h) = exp(=1.5 | A ). (4.3)

Le graphique de gauche représente le variogramme et celui de droite montre
une réalisation d’'un champ gaussien stationnaire centré de variogramme
donné par (4.3).

Lorsque le variogramme est borné, on appelle seuil (“sill” en anglais) la
valeur de son asymptote et portée (“range” en anglais) dans la direction
r la plus petite valeur de ||r| telle que y(r(1 +€)) = R(0) quel que soit
€ > 0. La Figure 4.3 montre graphiquement ces deux parametres dans le cas
d’un variogramme sphérique (les divers modeles de variogrammes classiques
seront définis dans le paragraphe 4.1.2) : la portée vaut 10 et le seuil vaut 1.
Un champ intrinsequement stationnaire est isotrope si son variogramme
~v(h) ne dépend que de la norme du vecteur h et non de sa direction. Dans
ce cas la fonction

R — E(Xsrn — Xs)* =0( 2 ])

est appellée variogramme omnidirectionnel isotrope. On parle d’anisotropie
lorsque ’hypothese d’isotropie n’est pas vérifiée. On peut alors représenter
une fonction variogramme univariée pour chaque direction appellée vario-
gramme directionnel. Si les lignes de niveau du variogramme sont des
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FIGURE 4.1 — Champ sans effet de pépite.
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(semi-)variogramme
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FIGURE 4.2 — Champ avec effet de pépite.

MODELE SPHERIQUE
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FIGURE 4.3 — Portée et Seuil d'un variogramme.
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ellipses, on dit qu’il y a anisotropie géométrique. On peut alors se ramener
a une configuration d’isotropie par une rotation composée par une affinité
(A). Alors y(h) = (|l AR [|).

Notons que, de facon similaire aux fonctions d’autocovariance, les fonctions
variogrammes sont caractérisées par la propriété mathématique suivante.
Une fonction y(t) de R & valeurs dans R est le variogramme d’un champ
aléatoire réel intrinsequement stationnaire si et seulement si elle est condi-
tionnellement défini négative d’ordre un c’est a dire que quels que soit ’entier

k, quels que soient les k sites sq1,..., s, et les réels ay,...,a, on a
E ok
Z Z aia;y(si, sj) > 0,
i=1 j=1
des que les réels aq,...,a; satisfont la condition Zle a; = 0. On dit qu’il

s’agit d’une variogramme valide.

4.1.2 Estimation d’un variogramme

On appelle variogramme empirique un estimateur du variogramme introduit

par Matheron (1962)

1

20 = N

Z (Xsi _XSj)27

(1,)EN(h)

ot h € R?, N(h) = {(i,7) : s; —s; = h} et #A désigne le cardinal de
I’ensemble A.

Dans le cas isotrope, on a y(h) = v(|| 2 ||) et I'on appelle alors la fonction
o le variogramme omnidirectionnel.

En pratique :

— il faut introduire une tolérance en distance € et une tolérance angu-
laire €y sinon les ensembles N (h) sont souvent vides pour un “design”
(disposition de points) irrégulier : (i,5) € N(h) si la valeur absolue
de la différence entre || s; — s; || et || h || est inférieure & €, et si la
valeur absolue de la différence entre I’angle de s; — s; et celui de h est
inférieure a €y.

— cet estimateur n’est fiable que pour les h inférieurs au demi-diametre
de la région et tels que N(h) contienne au moins 30 paires.

— le variogramme empirique n’est pas conditionnellement défini négatif.

— le variogramme empirique n’est pas robuste : en effet, pour un champ
gaussien, la variable % a une loi de x? & un degré de liberté
et donc une forte asymétrie. En réduisant cette asymétrie, Cressie et
Hawkins (1980) proposent une transformation en racine carrée de cette
variable qui rend l'estimateur moins sensible aux points aberrants.
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Finalement, un retour a 1’échelle d’origine et une correction de biais
les conduit a l'estimateur suivant :

_{gnm Zapenm Ks — X))}

0.457 + 25775

23(h)

Nous avons mentionné que le variogramme empirique n’est pas un vario-
gramme valide. Hors il est nécessaire d’avoir un estimateur conditionnelle-
ment défini négatif du variogramme pour que les variances de prédiction
estimées soient positives. Pour cela, on ajuste au variogramme empirique un
modele théorique.

Apres avoir choisi une famille paramétrique de variogrammes valides v(.; 6),
ol 6 € O est un vecteur de parametres, on ajuste les valeurs du variogramme
empirique §(hg) & cette famille par moindre carrés ordinaires :

0cO

K
min » (§(hi) =7 (hi: 0))*.
k=1

Sil’on veut tenir compte de la variabilité des §(hy) ou méme de leur structure
de covariance, on peut aussi utiliser des moindres carrés pondérés ou méme
généralisés. En pratique, le choix de la famille se fait souvent en examinant
visuellement la forme de la courbe empirique.
Les modeles fréquemment utilisés pour un variogramme isotropes sont

— le modele exponentiel

1(8) = 021~ exp(~ ).

— le modele sphérique

3h B}
h) =o?(— — —
1(h) =055 ~ o)
— le modele gaussien
h2

1(h) = 0*(1 — exp(~ 15)),
— le modele de Matern

1) = 02(1 — T s Ko

4.2 Matrices de voisinage pour variables surfaciques

La matrice de voisinage est la version spatiale de I'opérateur retard en
séries temporelles. Notons que le vocabulaire peut varier selon les auteurs et
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on lui donne aussi parfois le nom de matrice de poids. Dans certains cas, elle
se nomme matrice de contiguité (ce qui est en fait un cas particulier décrit
plus loin). Elle constitue un outil de modélisation et non un parametre du
champ. Pour n sites géographiques, une matrice de poids W est de taille
n x n et son élément w;; indique l'intensité de la proximité de la zone 4
par rapport a la zone j (elle spécifie la topologie du domaine mais attention
la proximité peut aussi avoir un sens autre que géographique comme on le
verra plus loin). On impose en général que la diagonale soit nulle w; = 0.
Une matrice de voisinage W n’est pas nécéssairement symétrique. On peut
symétriser une matrice W en la remplagant par (W + W) /2.

Une matrice de poids est dite normalisée lorsqu’on impose la contrainte
Z?Zl w;; = 1. Cette contrainte permet de rendre les parametres spatiaux
comparables entre divers modeles comme on le verra par la suite. On peut
normaliser une matrice en divisant chaque ligne par sa somme.

Il faut faire attention au fait suivant : si on normalise une matrice symétrique,
elle perd en général sa symétrie. De méme si on symétrise une matrice nor-
malisée, elle perd en général la normalisation. Seules les matrices double-
ment stochastiques peuvent étre a la fois normalisées et symétriques. Une
propriété plus faible que la symétrie qui est celle d’étre semblable a une
matrice symétrique va jouer un role plus tard. Si on normalise une matrice
symétrique, elle reste semblable & une matrice symétrique.

On distingue plusieurs sortes de matrices de voisinage. Pour définir ces ma-
trices, nous allons prendre un exemple : le tableau ci-dessous représente la
position respective de neuf sites.

11213
41015
6718

4.2.1 Matrices de contiguité

Une matrice de contiguité ne contient que des 0 et des 1. Dans le cas d’'une
grille réguliere, on distingue les cas suivants, nommés d’apres le vocabulaire
des échecs :

- la matrice “rook”‘consiste a poser w;; = 1 si les sites 7 et j ont au
moins une frontiére commune ; dans notre exemple, 0 est voisin de 2, 7, 4,
5.

Ecrivons cette matrice et sa version normalisée
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001011010 00%0%%0
001010000 00 5 0 3 00
110100000 3032000
001001000 0040030
Wyok=]1 1000 0 1 0 0 :Ook:%§0000§
100100001 002000
000010010 00004400
100000101 00000 %
000001010 0000030

- la matrice “bishop” consiste a poser w;; = 1 si les sites i et j ont au moins
un sommet commun ; dans notre exemple, 0 est voisin de 1, 3, 6, 8.

- la matrice “queen” consiste a poser w;; = 1 si les sites 7 et j ont au
moins une frontiere ou un angle commun ; dans notre exemple, 0 est voisin
del1,2,3,4,5,6,7,8.

Dans le cas de positions irrégulieres, deux zones sont contigues si elles ont
une frontiere en commun. Ces matrices sont automatiquement symétriques.

4.2.2 Matrices basées sur la distance entre centroides

Notons I(A) la fonction indicatrice de I’évenement A et d(s;, sj) une mesure
de distance entre les sites s; et s;. Cette distance peut désigner tout sim-
plement la distance euclidienne (distance géographique & vol d’oiseau) mais
peut étre aussi un temps de trajet entre les deux sites, ou encore de la forme
d(si, s5) =| x;—x; |, ot z; désigne une caractéristique socio-économique per-
tinente. Voici quelques fagons couramment utilisées pour définir une matrice
de voisinage a partie d’une distance :

- wi; = 1(d(s;,55) < 5), ou S est un seuil fixé.

- Wij = 08 ou C et «a sont des constantes fixées.

- wi; = exp(—ad(s;, 55)), ol a est une constante fixée.
Notons que ces matrices sont automatiquement symétriques.

4.2.3 DMatrices basées sur les plus proches voisins

Etant donné une notion de distance et un entier k, pour chaque site s;, on
ordonne les autres sites en fonction de leur distance a s; et 'on détermine
ainsi les k plus proches voisins de s;. La matrice contient alors sur la ligne
i des 1 pour les positions des k plus proches voisins et des 0 sinon. Ces
matrices ne sont en général pas symétriques.

4.2.4 Matrices basées sur triangulation de Delaunay

On appelle triangulation de Delaunay 'unique triangulation telle que
le cercle circonscrit & trois sommets quelconques ne contienne aucun autre
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sommet. Cette triangulation permet de construire une matrice de la facon
suivante : deux sites sont voisins si le segment les joignant est une aréte de la
triangulation. Ces matrices présentent cependant des liaisons pour les sites
en bordure avec des voisins tres éloignés.

Notons qu’on peut combiner le principe des plus proches voisins (ou de la
contiguité) et celui de la distance en une méme matrice. Ceci permet de
combiner les avantages des deux approches dans le cas de positions tres
hétérogenes des centroides de zones dans l’espace.

4.2.5 Variable spatialement décalée

Si X désigne le vecteur colonne des valeurs X, du champ aux points
d’observation, on appelle variable spatialement décalée associée a X
la variable WX. Si W est normalisée, ’élément i du vecteur (WX) est une
moyenne pondérée des valeurs du champ dans les zones voisines de la position
1. Dans le cas d’une variable de comptage, il peut étre plus intéressant de ne
pas normaliser la matrice de voisinage binaire de facon que (W X) représente
la somme (et non la moyenne) des valeurs voisines.

Notons que si la matrice W est normalisée et si le vecteur X est centré, le
vecteur spatialement décalé WX est également centré.

4.3 Indice de Moran pour variable surfacique conti-
nue

Pour une matrice de voisinage W vérifiant w;; = 0 et une variable X, =
X;,i=1,...n, I'indice de Moran est défini par :

Zi,j wi; (X;—X)(X;—X)
26, Wij

> (Xi—X)?

I =

C’est le rapport d’une sorte de covariance entre unités contigiies a la va-
riance du champ : il est donc comparable a un coefficient d’autocorrélation.
Cet indice est indépendant des unités dans lesquelles X est exprimé. Si ’on
symétrise la matrice W, (i.e. W — (W + W')/2), I est inchangé.

Si X est une variable centrée, les valeurs de X de méme signe et géographiquement
proches contribuent positivement a I. Les valeurs positives et fortes de I in-
diquent une autocorrélation spatiale positive, les valeurs négatives et fortes
de I une autocorrélation spatiale négative et les valeurs proches de 0 une
absence d’autocorrélation.

Attention : le I de Moran dépend du choix de la matrice W, et peut étre
affecté par le niveau d’agrégation (effet d’échelle) ainsi que par la forme des
unités spatiales.
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Il n’est pas possible d’interpréter un indice de Moran brut et nous verrons
plus loin comment le normaliser et 1'utiliser pour un test d’autocorrélation.
De fagon purement descriptive, nous pouvons cependant faire un diagramme
de Moran et en tirer des conclusions qualitatives sur I’autocorrélation. Pour
une matrice de voisinage W, le diagramme de Moran d’un champ X consiste
en un diagramme de dispersion de la variable X contre la variable spatiale-
ment décalée WX. On montre alors que la pente de la droite de régression
linéaire simple de WX contre X est égale a I'indice de Moran. Grace au
signe de la pente, on lit sur le graphique la tendance générale de l'auto-
corrélation, une pente positive correspondant a une autocorrélation positive
et inversement.

Notons qu’il existe d’autres indices similaires comme celui de Geary et de
Getis. Le coefficient C de Geary est défini par :

o n-— 1 Zi,j wij(Xsi - XS]')z
2 Zi,j wig (X, — X)?

Cet indice ressemble a la statistique de Durbin Watson en séries temporelles.
Les valeurs faibles de C indiquent une autocorrélation spatiale positive et
les valeurs fortes de C une autocorrélation spatiale négative. Cet indice est
indépendant des unités dans lesquelles le champ X est exprimé.

Pour comparaison, on rappelle que la statistique de Durbin-Watson pour
une série temporelle centrée est donnée par

n 2
o ( Xy — Xi1)
n 2 °
>oi—1 X
Il existe une version locale de I’ indice de Moran qui mesure une version

locale de la notion d’autocorrélation. L’indice de Moran local associé au
site ¢ se calcule simplement par

C

DW =

I = Zwij<Xi _X)(Xj - X) = (X; _X)Zwij<Xj - X).
j=1 =1

La somme des indices de Moran locaux redonne l'indice de Moran si bien
que I; peut étre considéré comme la contribution du point ¢ a 'indice global.
Il constitue une mesure d’influence du point ¢ sur I’autocorrélation globale.

4.4 Statistique “join counts” pour variable surfa-
cique qualitative

Ces statistiques sont souvent introduites dans le cas dichotomique. Si X;
a deux modalités 0 et 1 avec : P(X; = 1) = p, on introduit les statistiques
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suivantes appelées “join counts”

1
BB = Z wii X; X
/Lh]

1 2
1/7]

Il est facile de comprendre par exemple que si W est une matrice binaire, la
statistique BB compte le nombre de couples de sites voisins pour lesquels
X = 1. Donc si BB prend une grande valeur, cela va plaider pour une auto-
corrélation spatiale positive. Inversement, BW compte le nombre de couples
de sites avec une valeur différente de X. Nous verrons plus loin comment
utiliser ces statistiques pour évaluer ’autocorrélation spatiale d’une variable
surfacique binaire.

4.5 Processus ponctuels

La théorie des processus ponctuels est un cadre mathématique adapté a

la modélisation de répartitions aléatoires de points. Le package “spatstat”
de R (A. Badeley et R. Turner) permet la modélisation et la simulation de
tels processus. Citons également les packages “splancs” et “VR” de R. Nous
allons brievement évoquer la définition mathématique d’un tel processus.
Etant donné un sous-ensemble E de R?, un processus ponctuel X est une
variable aléatoire a valeurs dans I'espace INV;; des sous-ensembles x locale-
ment finis de F, c’est a dire tels que le nombre de points de x contenus
dans tout borné de F est fini. Ces sous-ensembles ou “configurations” sont
considérés comme des suites non ordonnées de points et notés {1, ,x,}.
Il faut bien str munir N;y d’une tribu N pour définir proprement le pro-
cessus mais nous ne rentrerons pas dans ces détails. Pour un borélien B de
R?, on notera N(B) le nombre de points d’une configuration appartenant
a B : pour tout B, N(B) est une variable aléatoire. La loi d’'un processus
ponctuel est définie par les probabilités P(X € Y), pour tout Y € N : cette
famille contient en particulier la famille des probabilités fini-dimensionnelles
P(N(B1) = n1,...,N(Bg) = ng). Il est a noter qu'un processus ponctuel
est caractérisé de maniere unique par la famille des probabilités d’évitement
P(N(B) = 0), lorsque B parcourt les boréliens.
Nous adopterons ici une approche plus commode pour les applications consis-
tant & définir une densité jointe f((:cl, e ,:zn),n) pour les variables N,
nombre de points, et X1, ..., X, localisations des N points (Cressie, 1993,
p.622). On a alors

Z/ f((81,~- ,Sn),n)d31-~dsn =1.
n=0 "
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On dit qu'un processus ponctuel est stationnaire lorsque sa loi (et par
conséquent toutes ses caractéristiques) est invariante par translation. On
dit qu’il est isotrope lorsque toutes ses caractéristiques sont invariantes
par rotation. Basée sur 'observation d’une seule réalisation sur une fenétre
bornée, 1’étude statistique d’un processus ponctuel porte sur 'estimation
de ses caractéristiques, le diagnostic d’homogénéité, d’interaction et enfin la
modélisation en fonction de caractéristiques explicatives.

4.5.1 Un exemple : le processus de Poisson homogene

Le processus de Poisson homogene est le modele de base en théorie des
processus ponctuels car il formalise le concept de points répartis au hasard.
Il est défini par les deux conditions suivantes pour un domaine © de R? :

1. il existe un réel A > 0 tel que pour tout borélien A de R?, N(A) suit
une loi de Poisson de moyenne A | A |, ou | A | désigne l'aire de A.

2. sachant que N(A) = n, les n points du processus qui sont dans A
forment un échantillon de la loi uniforme sur A.

Ces deux conditions impliquent la condition (3) suivante : pour deux boréliens
A et B, les variables aléatoires N(A) et N(B) sont indépendantes. Le pro-
cessus de Poisson homogene est stationnaire et isotrope.

On démontre que les probabilités fini-dimensionnelles de ce processus sont
données par

A\t tng | B |n1 | By, ’nk

K
P(N(B1) =n,...,N(By) = ng) = ol exp(= > M| By |).
Iy v

Conditionnellement au nombre total de points N = N (), les positions sont
indépendantes et identiquement distribuées selon une loi uniforme sur ).
Mais il ne faut pas confondre ce modele avec celui de points uniformément
répartis sur Q2 pour lequel le nombre de points n’est pas aléatoire (ce pro-
cessus porte le nom de processus ponctuel binomial car le nombre de points
contenus dans un borélien A de 2 suit alors une loi binomiale).

4.5.2 Le processus de Poisson inhomogene

Le processus de Poisson homogene ayant une intensité constante ne peut
servir a modéliser des phénomenes présentant une forte hétérogénéité spa-
tiale. Etant donné une mesure d’intensité A, on peut définir le processus de
Poisson X de mesure d’intensité A par les deux conditions suivantes

~ (i) le nombre de points N(A) de X dans tout borélien A de R?, suit

une loi de Poisson de moyenne A(A),

— (ii) les nombres de points de X dans k boréliens A, ..., Ay disjoints

de R? sont k variables aléatoires indépendantes.
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Ainsi défini, ce processus n’est pas stationnaire sauf si 'intensité est constante.
Conditionnellement & N = n, les n points Xi,...,X,, sont alors i.i.d..
Lorsque la mesure d’intensité est absolument continue par rapport a la me-
sure de Lebesgue (A(A) = [, AM(x)dz), il existe une relation directe entre
I'intensité du processus ponctuel A(.) et la densité d-dimensionnelle f(.) de
toute localisation X; conditionnellement & N :

R C)
Vs e E, f(s) = m

4.5.3 Caractéristique d’ordre un : I’intensité

L’intensité est I’analogue pour le processus ponctuel de I’espérance pour
une variable aléatoire. On commence par définir la mesure d’intensité comme
une mesure sur les boréliens B de R? vérifiant

de fagon que A(B) représente le nombre moyen de points du processus dans
B. Si le processus est stationnaire, cette mesure est proportionnelle a la
mesure de Lebesgue et le facteur de proportionalité, A, appellé intensité,
représente le nombre moyen de points du processus par unité de surface.
Plus généralement, si A est absolument continue par rapport a la mesure de
Lebesgue, il existe une fonction A localement intégrable définie sur F telle
que pour tout borélien B,

A(B):/B)\(:E)dx.

Cette fonction A porte le nom de fonction d’intensité du processus ponctuel.
Comme on ’a vu ci dessus, si le processus est stationnaire, la fonction d’
intensité est constante. Inversement, si le fonction d’intensité est constante,
le processus est dit stationnaire au premier ordre ou homogene (sinon, il est
dit inhomogene). Dans le cas du processus de Poisson homogene, la fonction
d’intensité est constante égale au parametre A de la définition du paragraphe
4.5.1.

4.5.4 Estimation de ’'intensité

Dans le cas d’un processus homogene d’intensité A, un estimateur sans
biais de l'intensité est donné par A= %, ou W est la fenétre d’observation
et N = N(W) le nombre de points observés dans cette fenétre. Il coincide
en fait avec l'estimateur du maximum de vraisemblance dans le cas ou le
processus est un Poisson homogene.

Dans le cas inhomogene, on peut utiliser un estimateur non paramétrique,
introduit par Diggle (1985) donné par
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redwood

FIGURE 4.4 — Processus régulier (a gauche) et agrégé (a droite)

Snls) = S IR ()
T Jeh K (55*)du

ou le dénominateur est un terme de correction au bord nécessaire lorsque
le domaine d’observation est limité et ou K est une fonction noyau. Cet
estimateur est, de méme qu’un estimateur non paramétrique de densité, peu
sensible au choix du noyau K. Le choix de la largeur de bande ou fenétre h
permettant de minimiser ’erreur quadratique moyenne intégrée

(4.4)

Q 2
EQMI(h) = E{/ (An(s) = A(s)) ds}
E
se fait selon des méthodes similaires au cas de l'estimation de densité.

4.5.5 Caractéristiques d’ordre deux : Fonctions F, G, J, K

Du fait de la propriété (ii) (voir paragraphe 4.5.2), le processus de Poisson
implique une absence d’interaction entre les évenements. Les caractéristiques
du second ordre vont permettre de mettre en évidence deux autres types
de comportement. On distingue d’une part les processus pour lesquels les
éveénements ont tendance a s’attirer (agrégation) et ceux pour lesquels les
évenements ont tendance a se repousser (régularité). On voit la différence
entre ces deux comportements sur la figure suivante.

Nous allons d’abord introduire un certain nombre de fonctions associées a
un processus ponctuel basées sur les distances entre points.
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Distance d’un point courant au plus proche voisin

Soit x un point de E qui ne figure pas nécéssairement dans une configu-
ration du PP X. Pour un processus ponctuel X homogene, on définit

Fy(r) = P(d(z, {z1,--- 20} \ {2}) < 7).

Notons qu’en raison de 'homogénéité F, ne dépends pas de x, c’est pourquoi
nous le noterons plus simplement F. F est la fonction de répartition de la
distance au plus proche voisin et peut aussi s’interpréter comme la mesure
de “'espace vide” (c’est pourquoi on I'appelle ”empty space function” en
anglais) dans le sens suivant : 1 — F'(r) est la probabilité qu'une boule de
centre 0 (ou un quelconque point de F fixé) ne contienne aucun point de X.
Pour estimer F', on utilise en général une grille fine de points définie sur F
qui permet d’approximer les distances au plus proche voisin.

Sous I'hypothese CSR d’homogénéité spatiale sur R?, la fonction F a la
forme analytique suivante pour z > 0

F(z) =1 — exp(—mAz?).

On en déduit la méthode suivante pour évaluer qualitativement I’hypothese
CSR par des simulations. On simule M réalisations d’un processus de Pois-
son homogene dans F et on calcule la fonction Fj, (r) pour chaque simulation
k. On détermine ensuite I’enveloppe supérieure Fy et inférieure F, par

M- M.
Fy(r) = Ii@f(Fk(r)’FL(r) = k_nlle(r)

Si la fonction F (r) de notre réalisation se trouve dans ’enveloppe, on en
déduit que le modele de Poisson homogene est compatible avec les données.
Pour le jeu de données cells (positions de cellules) de spatstat, on voit que
la fonction £ en noir sur la figure 4.5.5 sort de I'enveloppe (en pointillés).

Distance d’un point du PP au plus proche voisin

Si cette fois, on s’intéresse a la distance entre un point du PP et son plus
proche voisin, on définit la fonction de répartition de ces distances G par

G(r) =P(d(z,{z1, - ,zo} \ {2}) <7 |2z € X).

Un estimateur classique de G est donné par la fonction de répartition em-
pirique définie par

N
Glr) = 5 S 1w, ay) < ),

=1
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FIGURE 4.5 — Processus régulier a gauche et agrégé a droite

ou zj(;) est le point de X le plus proche de z;. Le méme principe d’enveloppes
peut étre appliqué et I'on voit que sur les données cells, 'estimateur de la
fonction G sort également de I’enveloppe sous 'hypothese CSR.

A partir de F et G, on peut définir la fonction J par

_1-G(@)

J(r)—m.

J = 1 correspond au cas d’un processus poissonnien. J > 1 indique une
tendance a la régularité et J < 1 a l'agrégation. La figure 4.5 montre la
différence de comportement de J entre les données cells et les données red-
wood.
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Fonction de corrélation des paires, fonction K de Ripley

De méme que l'on a introduit la mesure d’intensité pour le moment
d’ordre 1, le role du moment d’ordre 2 est joué par la mesure de moment
factoriel d’ordre 2, donnée pour tous boréliens B; et By de R? par

a2(31 X Bg) = E(N(Bl)N(BQ)) — A(Bl N BQ).

Lorsque cette mesure est absolument continue par rapport a la mesure de
Lebesgue, on note po sa densité, appellée densité d’intensité d’ordre 2. Pour
un PP stationnaire, la fonction ps(x,y) ne dépends que de x — y. Si de plus
le PP est isotrope, elle ne dépends que de || z —y ||.

A partir de pg, on définit la fonction de corrélation des paires g par

p2(2,9)
=30

C’est cette fonction qui conduit a une autre méthode de comparaison avec
un PP de Poisson. En effet, il est facile de voir que pour un PP de Poisson, on
ag(x,y) =1.Sig(x,y) > 1, cela indique que pour ce PP, il est plus probable
d’observer un couple de points en x et y que pour un PP de Poisson ayant la
méme intensité. Si le PP est stationnaire et isotrope, g est une fonction de
r=|z—y|; g(r) > 1 indique une tendance a l’agrégation pour des points
a distance r, et inversement, g(r) < 1 indique une tendance a la répulsion
pour des points a distance r.

Une fagon alternative de caractériser les propriétés du second ordre est au
travers de la fonction K de Ripley et de la fonction L qui lui est associée.
Pour un PP stationnaire, introduisons la mesure k, appellée mesure des
moments réduits d’ordre deux, pour un borélien B par

k(B) = )\12/Bp2(x)da:.

Si de plus le PP est isotrope, en prenant pour B une boule B(0,r) de centre
Porigine et de rayon r, la fonction K de Ripley est définie par

K(r) = k(B(0,r)).

K (r) peut aussi s’interpréter comme le nombre moyen de points du PP dans
une boule centrée en un des points du PP, hormis le centre lui-méme. Pour
un PP de Poisson homogene, K (r) = 7r? et ceci engendre une autre méthode
de comparaison avec un modele de Poisson. Pour faciliter la comparaison et
aussi pour réduire la variance, il est d’'usage de renormaliser la fonction K
en définissant la fonction L par

my/?_

s

L(r) =
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FIGURE 4.6 — Processus régulier a gauche et agrégé a droite

Pour le PP de Poisson homogene, la fonction L est donc égale a r. Lorsque
L(r) —r > 0, cela indique un phénomene d’agrégation pour des distances
inférieures ou égales a r, et lorsque L(r) —r > 0, cela indique un phénomene
de régularité pour des distances inférieures ou égales a r.
Pour un PP stationnaire et isotrope, les relations suivantes existent entre g,
p2 et K : , .

o) = 20 = B0 ey - 2 | wontwra. (4.5)
Pour estimer ces diverses caractéristiques du second ordre, on peut commen-
cer par estimer ps par un estimateur a noyau de la densité incluant une cor-
rection de bord (diverses corrections existent). On peut alors en déduire un
estimateur de la fonction de corrélation des paires en divisant par S\(x)j\(y),
ot \ est par exemple l'estimateur de Diggle de D'intensité (voir 4.4).
On peut estimer directement la fonction K par

R(r) = Z I(x —y € B(0,r))

ceX,yeWer Ma)A(y)

9

ou Wg, désigne I’ensemble des points de la fenétre W tels que la boule
centré en ce point et de rayon r soit entierement incluse dans W. D’autres
formules existent mais consistent essentiellement & faire d’autres corrections
de bord. Cet estimateur se calcule dans spatstat avec la fonction Kest et
loption correction=“border”. Notons que les relations 4.5 permettent aussi
de déduire un estimateur de g a partir d’un estimateur de K.

La figure 4.6 montre un estimateur de la fonction de corrélation des paires
pour les données cells et redwood.

La figure 4.7 présente des estimateurs des fonctions de Ripley pour les
données cells et redwood et I'on voit bien a nouveau la différence de com-
portement entre processus régulier et agrégé.

41



Fonction K de Ripley pour cells

0.20
I

Fonction K de Ripley pour redwood

K(n)
0.10 0.15
I I

K(r)
0.10
.

0.05
I

0.00
I

0.20
I
025

0.15
I
015 0.20

sart(cbind(obs, theo, hi, lo)/pi)

sqrt(chind(obs, theo, hi, Io)/pi)
010

0.05

0.00
I

0.00

FIGURE 4.8 — Processus régulier a gauche et agrégé a droite

Enfin la figure 4.8 présente des enveloppes de la fonction L pour les données
cells et redwood.
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Chapitre 5

Méthodes exploratoires pour
données spatiales

L’analyse exploratoire est préalable a toute modélisation statistique :
c’est la phase de mise en place des bases de données, de leur nettoyage et du
premier contact avec les variables. Il faut recenser et traiter les valeurs man-
quantes et les valeurs aberrantes, et produire les premiers diagnostics des-
criptifs uni et multidimensionnels. Dans le cas de données géoréférencées, aux
techniques habituelles sur lesquelles nous ne reviendrons pas ici, s’ajoutent
des méthodes spécifiques qui font ’objet de ce chapitre. Les Systemes d’In-
formation Géographique! (“SIG”), permettent de gérer et de cartographier
des données géoréférencées mais ils n’intégrent pas ou peu d’outils statis-
tiques sophistiqués, en particulier les outils spécifiques aux données spatiales.
Nous utiliserons le terme “variable spatiale” pour désigner un ensemble de
n observations d’un champ aléatoire en n sites ou n zones. Nous présentons
dans ce chapitre les fondements de cette analyse. Un module de R dénommé
“GeoXp” permet de mettre ces techniques en pratique (Laurent et al. 2012).
Il permet une exploration interactive avec un dialogue entre graphique sta-
tistique et carte géographique.

5.1 Analyse exploratoire des matrices de voisinage

Avant de faire le choix d’utiliser une matrice de voisinage particuliére,
il est bon d’en faire une exploration. Par exemple, on peut représenter gra-
phiquement les liens non nuls par des segments sur la carte et produire
quelques caractéristiques de la distribution du nombre de voisins et de la
distance au plus proche voisin. On peut ainsi comparer ces caractéristiques
pour quelques choix différents de matrices.
Pour une matrice de voisinage W et une variable X données, le graphique

1. Exemple de SIG libre : Quantum GIS, http://www.qgis.org/
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des voisinages consiste en un simple diagramme de dispersion ou ’on porte
pour tout site i, en abscisse la valeur X; de la variable X au site ¢ et en
ordonnée les valeurs X; de la variable X aux sites j voisins de 7 au sens
de W, c’est-a-dire tels que w;; # 0. Du point de vue de 'exploration de
la matrice de voisinage, ce diagramme permet d’explorer la matrice dans le
sens suivant :

1. il permet de visualiser qui est voisin de qui,

2. il permet d’aprécier visuellement la taille des voisinages lorsque la
matrice est définie par un nombre de plus proches voisins : la “largeur”
de la bande autour de la diagonale sur le nuage illustre ’étendue des
voisinages,

3. il permet d’aprécier visuellement le nombre de voisins lorsque la ma-
trice est définie par une distance seuil.

5.2 Analyse exploratoire d’une tendance direction-
nelle

Une variable présente une tendance dans une direction donnée, par exemple
Sud-Est /Nord-Ouest, si celle-ci présente une moyenne non constante dans
cette direction. Supposons dans un premier temps que la direction est connue
et pour simplifier qu’il s’agit de la direction Nord-Sud ou Est-Ouest. Pour
mettre en évidence cette tendance et la décrire, c’est-a-dire préciser comment
varie la moyenne (croissante, décroissante, en forme de U, etc.), on superpose
une grille réguliére a la carte faite de petits rectangles, pour un nombre choisi
de lignes et de colonnes. On calcule dans chaque rectangle les moyennes et
médianes de toutes les unités dont le centroide se situe dans ce rectangle,
et on fait de méme sur chaque ligne et colonne. On met ensuite la carte en
regard avec & droite les moyennes et/ou médianes par ligne et en dessous
les moyennes et/ou médianes par colonne (ainsi que du nuage des moyennes
et/ou médianes par rectangle). La variation sur le graphique de droite des
moyennes et/ou médianes (que 'on peut interpoler pour une meilleure li-
sibilité) met alors en relief une tendance Nord-Sud si les moyennes et/ou
médianes ne sont pas constantes et respectivement la variation sur le gra-
phique du dessous une tendance Est-Ouest si les moyennes et/ou médianes
ne sont pas constantes. Si maintenant la direction est connue mais n’est ni
Nord-Sud, ni Est-Ouest, on peut alors introduire un angle de rotation de la
carte permettant de se ramener a la situation précédente. Finalement, dans
le cas plus réaliste ou ’on ne connait pas d’avance une direction de ten-
dance, il faut alors utiliser un autre graphique exploratoire pour déterminer
une telle direction. Pour un couple de sites ¢ et j sur la carte, on définit
I'angle 0;; entre I'axe des abscisses et le vecteur d’origine i et d’extrémité
j. On réalise ensuite un diagramme de dispersion dans lequel on associe a
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I'angle ;5 la valeur absolue | X; — X | de la différence entre les valeurs de la
variable en ces deux sites. Si la variable présente une tendance directionnelle
dans la direction 6, les différences | X; — X | pour les couples (i, j) tels que
0;; est voisin de ¢ vont étre plus importantes que dans les autres directions.
Notons que ce graphique permet de détecter des tendances bien marquées.

5.3 Analyse exploratoire de ’autocorrélation spa-
tiale

5.3.1 Le diagramme de Moran

Il s’agit d’un outil permettant d’explorer ’autocorrélation spatiale d’une
variable surfacique continue. Un diagramme de Moran est un nuage de points
présentant une variable d’interét X en abscisse et la variable spatialement
décalée WX en ordonnée. La variable X est centrée en abscisse et par
conséquent la variable spatialement décalée W X en ordonnée est également
centrée lorsque W est normalisée. Un point du quadrant « > 0,y > 0 cor-
respond a un site ou la variable X est supérieure a sa moyenne et ou la
variable WX également, témoignant d’une autocorrélation locale positive.
Un point du quadrant = < 0,y > 0 correspond a un site ou la variable X
est inférieure a sa moyenne et ou la variable W X est par contre supérieure
a sa moyenne, témoignant d’'une autocorrélation locale négative. Les deux
autres quadrants s’interpretent de méme. Une non linéarité du nuage indique
plusieurs régimes d’association spatiale.

5.3.2 Le nuage de variogramme

Il s’agit d’un outil permettant d’explorer ’autocorrélation spatiale d’une
variable ponctuelle continue. Pour une variable donnée possédant un va-
riogramme isotrope, le “nuage de variogramme” est une représentation du
demi-carré de la différence entre les valeurs de la variable mesurée en deux
sites distants de h en fonction de la distance h pour tous les couples de sites.
Sil’on revient a la formule (4.2) définissant le variogramme, on voit aisément
qu’un lissage de ce nuage de points estime la fonction (k). Ce lissage peut
étre superposé au nuage de points permettant ainsi d’analyser les diverses
caractéristiques du variogramme (portée, seuil, effet de pépite).

5.4 Analyse exploratoire des points atypiques spa-

tiaux

En statistique spatiale, il y deux sortes de points atypiques : les atypiques
au sens ordinaire que nous nommerons ici “globaux” par opposition aux
atypiques locaux que nous allons définir.
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Au sens ordinaire, un point est dit atypique global pour la variable X si sa
valeur pour X est extréme par rapport a 'ensemble de la distribution de X.
Il y a bien str un degré de liberté dans la facon dont on définit “extréme”.
Etant donnée une structure de voisinage sur I’ensemble des sites, un point
est dit atypique local pour la variable X si sa valeur pour X est extréme
par rapport a l’ensemble de la sous-distribution des X sur les sites voisins
du site concerné.

Un aberrant global est en général un aberrant local (sauf dans le cas de
groupes d’atypiques), mais un aberrant local peut tres bien ne pas étre un
aberrant global.

Divers graphiques exploratoires permettent de détecter les atypiques locaux.
On peut utiliser le nuage de variogramme, le diagramme des voisins, le dia-
gramme de Moran, etc.

Avec le diagramme des voisins, les points éloignés de la diagonale corres-
pondent & des couples de sites voisins dont les valeurs différent. Un atypique
local aura donc sur sa verticale des points éloignés de la diagonale.

Avec le diagramme de Moran, on peut repérer certains atypiques locaux,
ceux qui contribuent au I de Moran global avec un I local significatif.

Avec le nuage de variogramme, on procede ainsi. Tout d’abord, il est préférable
pour cet objectif d’utiliser la version robuste du variogramme obtenue en
remplacant le carré de la différence par la racine carrée de la différence : en
effet, pour un champ gaussien isotrope X, la loi de % est un 2 a un

. , . by . - 1/2
degré de liberté donc une loi asymétrique, alors que la loi de % est

presque symétrique. Décider si une valeur élevée est un point atypique est
plus facile sur une loi symétrique car une loi asymétrique peut produire des
valeurs élevées qui ne sont pas atypiques. On peut repérer, sur le nuage de
variogramme, des couples de sites atypiques en ce sens que la différence entre
les valeurs du champ entre ces sites est grande comparée aux différences entre
couples de sites distants de la méme distance. En pratique, ce sont surtout
les atypiques globaux qui ressortent.
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Chapitre 6

Tests d’autocorrélation et
d’homogénéité spatiale

On s’intéresse dans ce chapitre a la question de savoir si les données
nécéssitent un traitement spécifique aux données spatiales. En effet une va-
riable observée spatialement peut tres bien dans ’absolu ne pas présenter
d’hétérogénéité ni d’autocorrélation et dans ce cas elle peut étre étudiée
avec des techniques usuelles. Dans le cas de données de type ponctuel ou
de type surfacique, il s’agira de répondre a la question : une variable ob-
servée présente-t-elle de I’autocorrélation spatiale et comment construire un
test. Dans le cas de données de type semis de points, il s’agira de tester
I’homogénéité spatiale du phénomene.

6.1 Test de Moran pour variable surfacique conti-
nue

Il s’agit de tester I’hypothese d’absence d’autocorrélation spatiale pour
une variable surfacique continue X . L’hypothese nulle est Hy : “absence d’au-
tocorrélation spatiale” et ’alternative est Hy : “présence d’autocorrélation
spatiale”. Cette spécification est trop vague pour construire un test et il est
nécéssaire de faire des hypotheses plus précises pour Hy de facon a avoir une
statistique de test de distribution connue. Il existe deux modeles classiques
pour cela.

Dans le modele dit “free sampling”, on suppose que sous Hg, X1, -+ , X, sont
indépendantes et identiquement distribuées de loi N(0,0?). Ceci conduit
au test, dit “test gaussien”, qui teste en réalité si I’échantillon observé est
représentatif de la distribution d’un vecteur gaussien de composantes i.i.d.
La statistique de test est 'indice de Moran I associé a une matrice de voi-
sinage W choisie (ce test dépend donc de ce choix). La loi de I sous Hy ne
peut pas étre exprimée analytiquement et on utilise donc la loi asymptotique
de I sous Hy. Pour cela, on a besoin de normaliser d’abord l’indice en lui
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enlevant sa moyenne et en le divisant par son écart-type. Le calcul de cette
moyenne et cet écart-type du I de Moran utilise le Théoréme de Pitman
et Koopmans. On obtient

E(I) = ———,

et
n2S; — nSs + 353

(n?—=1)Sg

ou les quantités dépendent de la matrice de voisinage W

E(I%) =

1
So = szj, S1 = 3 Z(wij +w;i)?, S = Z(wwr +wyq)?,
i#j i#j i#]

Wit = § Wiz, W45 = E Wii-
j J

J

avec

On utilise alors la loi asymptotique A (0,1) de 'indice normalisé pour cal-
culer une p-valeur associée.

Dans le modele dit “non free sampling” ou modele de randomisation, on sup-
pose que conditionnellement aux observations X; = x;, en ’absence d’au-
tocorrélation spatiale les n! permutations des réalisations x1,--- ,x, sont
équiprobables. Ceci conduit a 'aide de la statistique de Moran au test, dit
“test de permutation”, qui teste si 1’échantillon observé est représentatif
d’une allocation aléatoire uniforme des valeurs x1,--- ,x, aux n sites de la
carte. On peut également calculer les moments de I sous cette hypothese
nulle et la moyenne est la méme que pour le modele “free sampling” mais
la formule de la variance est plus compliquée.

Le choix entre “free sampling” et “non free sampling” peut étre guidé par le
contexte mais notons que si X suit une loi F' inconnue de variance finie, on
a toujours la méme espérance pour 'indice de Moran et le moment d’ordre
deux vérifie E(I?) = E(Eg(I?)), ou Ei désigne I’espérance sous 1’hypothese
de randomisation.

Il existe également un test de Monte Carlo basé sur l'indice de Moran qui
ne nécéssite pas le choix d’'un modele. En pratique, on tire au hasard 1" per-
mutations des sites et pour chaque permutation on realloue les valeurs de
la variable sur les sites permutés. On calcule les indices de Moran pour cha-
cune de T permutations, leur minimum I,,,;, et maximum I,,,,.. On compare
alors la valeur observée de I'indice de Moran avec U'intervalle [Ipnin, Imaz]-
On rejette Hy si 'indice de Moran n’est pas dans cet intervalle. Le “pseudo-
niveau de signification” empirique du test est égal & (L +1)/(T + 1) ou L
est le nombre de fois parmi les T permutations que I'indice de Moran recal-
culé dépasse la valeur observée sur ’échantillon. (le +1 vient du fait qu’on
compte l'observation initiale ainsi que les T' permutations).
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6.2 Test de Moran pour variable surfacique quali-
tative

De méme que pour les variables surfaciques continues, il y a deux modeles
différents selon 'hypothese nulle. Si X est qualitative avec k modalités, le
modele “free sampling” suppose un tirage aléatoire avec remise dans une
population ayant k groupes de proportions pi, -+ ,pr connues : les X; sont
alors indépendantes de loi multinomiale. En pratique, p1, - - - , pr doivent étre
estimées par les fréquences empiriques. Pour le modele “non free sampling”,
on suppose un tirage aléatoire sans remise dans une population ayant k
groupes d’effectifs connus ny, -+ ,ny : la loi du n-uplet (Xi,---,X,,) est la
loi hypergéométrique conditionnelle aux effectifs de groupe observés.

Les statistiques utilisées pour construire le test sont les “join counts” et
leurs moments sous ’hypotheése nulle sont connus dans le cas de variables
dichotomiques.

Dans ce cas pour le modele “free sampling”, les X; sont i.i.d. Bernouilli
B(1,p). Les deux premiers moments sont

1
E(BB) = 5Sgp2

4Var(BB) = p*(1 —p)[S1(1 — p) + Sap]
E(BW) = Sop(1 - p)
AVar(BW) = [4S1p(1 — p) + S2p(1 — p)(1 — 4p(1 — p))].

Pour le modele “non free sampling”, il y a ng = ), X; valeurs 1 et n —np
valeurs 0, et ’on fait un tirage sans remise.

Avec la notation n® = n(n —1)---(n — b+ 1), on peut écrire les deux
premiers moments et la variance asymptotique :

(2)

_Song
BBB) =5®
2) B @
n n n
4Var(BB) = [Sl(ng) - 2ng) + nﬁ))
3 4 4 2
LS (n%) B n%)) n Sgnsg) B (Son%))ﬂ
20,3 T L@ n® n?

2
dasVar(BB) = p*(1 - p)[S1(1 —p) + S2p — 4%]
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6.3 Test d’autocorrélation pour variable ponctuelle
continue

On peut tester I’absence d’autocorrélation spatiale d’une variable ponc-
tuelle continue a ’aide du variogramme empirique avec une approche par
simulations. De méme que pour le test de Monte Carlo d’un indice de Moran,
cela consiste a faire des permutations aléatoires des valeurs de la variable
sur les sites et a recalculer le variogramme empirique sur chaque permuta-
tion. Si le variogramme empirique tombe dans 95 pour cent de I’étendue de
ces variogrammes empiriques, alors on ne peut pas rejeter ’absence d’auto-
corrélation spatiale et on peut penser que la forme observée de la courbe,
méme si elle n’est pas plate, a pu étre un effet du hasard.

6.4 Test d’autocorrélation des résidus d’un modele
de régression linéaire ordinaire pour variable
surfacique continue

Il est intéressant de tester I’autocorrélation spatiale d’une variable mais
dans une démarche de modélisation, on est fréquemment amené a tester
I'autocorrélation spatiale de résidus dans un modele linéaire ordinaire. En
effet celui-ci servira de modele de base et si une autocorrélation apparait
dans ses résidus, on s’orientera alors vers un modele spatial. Il n’est ce-
pendant pas possible d’utiliser le méme test de Moran que précédemment
pour le cas d’une variable surfacique continue car méme en ’absence d’au-
tocorrélation spatiale des erreurs ¢; du modele linéaire, les résidus estimés
ne sont pas indépendants. On utilise comme statistique de test 'indice de
Moran généralisé qui n’est autre que 'indice de Moran ordinaire appliqué
aux résidus du modele linéaire mais il faut ajuster les calculs de moments.
Dans le cas D = I,, on montre que sous I'hypothese d’absence d’auto-

corrélation spatiale
trA

n—=k’

ott k est le nombre de colonnes de X et A = (X'X) "1 X'WX.

E(I) = —

6.5 Tests d’homogénéité spatiale pour semis de
points

On dit qu’un processus ponctuel vérifie ’hypothese d’homogénéité spa-
tiale (hypotheése CSR pour “complete spatial randomness”) si ¢’est un pro-
cessus de Poisson homogene. Cette hypotheése implique donc a la fois 1'ho-
mogénéité de la répartition des points en moyenne mais aussi I'indépendance
entre les observations dans des zones disjointes (une propriété d’ordre 1 et

50



une propriété d’ordre 2). Tester ’hypthese CSR est la premiere étape dans
la modélisation d’un processus ponctuel dans le sens ou si le processus est
Poisson homogene, il sera entierement caractérisé par le réel A du paragraphe
4.5.1. Si cela n’est pas le cas, c’est alors que le travail de modélisation peut
commencer. Il existe de nombreux tests de CSR mais nous allons seulement
développer deux approches.

6.5.1 Test basé sur les quadrats

Ce test tres ancien consiste a diviser la fenétre d’observation en m qua-
drats, c’est a dire en cellules rectangulaires ou carrées d’égale surface et
a dénombrer les points du processus dans chaque cellule, notés ng, k =
1,...,m. Soit n = > le nombre moyen de points par cellule. Considérons
alors la quantité suivante

=y e
k=1

puil

—_
3

)

I peut d’abord étre interprété comme le rapport entre la variance em-
pirique des effectifs ny et leur moyenne (coefficient de variation). Les cellules
étant de méme surface, sous I’hypothese CSR, les effectifs sont équidistribuées
de loi de Poisson et comme la moyenne d’une loi de Poisson est égale a sa
variance, I n’est autre que le ratio de deux estimateurs de la variance. Par
ailleurs, conditionnellement au nombre total de points, (m — 1)I n’est autre
que le x? de Pearson d’ajustement de la série des effectifs des quadrats.
Sous I'hypothese CSR, la loi de (m — 1)I peut étre approximée asympto-
tiquement par une loi de x? & m — 1 degrés de liberté. Lorsque cet indice
est significativement grand et que I’homogénéité est respectée, il denote une
tendance a 'agrégation, c’est a dire une dépendance entre les points de type
attraction. Inversement, lorsque cet indice est significativement petit et que
I’homogénéité est respectée, il traduit une tendance a la régularité, c’est a
dire une dépendance entre les points de type répulsion.

6.5.2 Diagnostic basé sur des simulations

Une autre approche pour évaluer ’hypothese CSR. consiste a simuler
M réalisations d’'un processus de Poisson homogene et a calculer des ca-
ractéristiques du processus (fonctions F,G, K ou L) pour chaque simulation.
On trace ensuite les enveloppes de ces courbes sur I’ensemble des simulations
et on évalue si la caractéristique observée sur ’échantillon entre ou non dans
ces enveloppes.
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Chapitre 7

Modeles de régression
spatiale

Le contexte général des modeles de régression spatiale pour variables
surfaciques est le suivant. On dispose d’une variable dépendante dont les
mesures en 7 sites donnent un vecteur aléatoire Y (quantitatif, univarié). Les
sites sont représentés par leur centroide s;. On dispose également d’une va-
riable indépendante dont les mesures en n sites donnent un vecteur aléatoire
X (quantitatif , multivarié de dimension p), observé sur les mémes zones.
En général on suppose de plus que X et Y ont une distribution gaussienne.
On verra que la modélisation de la tendance ne présente pas de spécificité
technique dans les modeles spatiaux alors que celle de "autocorrélation en
présente. C’est cette structuration de 'autocorrélation prenant en compte le
fait que celle-ci découle de la proximité relative des points dans un certain
espace qui fait la force des modeles spatiaux.

7.1 Un catalogue de modeles de régression spa-
tiale

On peut faire entrer la plupart de ces modeles dans le cadre suivant :
Y=pu+e

avec p=E(Y | X) (dou E(e) =0et X L Y), Var(Y) =V.

Les données spatiales présentent souvent une hétéroscédasticité, c’est pour-
quoi dans un premier temps le modele de base non-spatial WLS (pour
“weighted least squares“) qui nous servira d’étalon est

Y=X0+e¢ (7.1)

avec E(¢) = 0,Var(e) = 2D, ou D est une matrice diagonale, D = I,
correspondant au modele OLS.
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La présence de D correspond a1’ hétéroscédasticité. Par exemple, si T; (resp :
7;) est le taux de chomage observé (resp : théorique) dans la zone i et P;
est la population de la zone. Alors var(T;) = w donc méme si le taux
de chomage est constant, il faut prendre des poias sur la diagonale de D
proportionnels a P%. Plus généralement, si la variable a expliquer est une
proportion ou une moyenne (par exemple un taux de chomage, un mon-
tant de dépenses mensuel par ménage), il est naturel de penser qu'un ra-
tio avec un dénominateur plus grand est moins sujet a variabilité que si
ce dénominateur est faible. Plus précisément, on peut supposer que la va-
riance est inversement proportionnelle au dénominateur, ce qui se justifie par
le raisonnement suivant. S’il s’agit d’'une moyenne empirique, prenons par
exemple le montant de dépenses mensuel par ménage, on sait que la variance
d’une moyenne empirique est de la forme %2, ol ¢ est la variance de la va-
riable sous-jacente, ici le montant de dépense d’un ménage, et n est la taille
de la sous population sur laquelle cette moyenne est calculée, ici le nombre
de ménages de la zone. Si I'on suppose que la variance o est homogene sur
I’ensemble des zones, la différence de variance entre zones s’explique par la
différence du nombre de ménages et ’'on peut donc prendre la pondération
inversement proportionnelle au nombre de ménages de la zone. S’il s’agit a
présent d’une proportion, le raisonnement est le méme (une proportion étant
une moyenne de variables de Bernoulli) en supposant le parametre de la Ber-
noulli homogene sur les zones, et dans le cas du taux de chomage, on peut
donc prendre la pondération inversement proportionnelle & la population.
Rappellons également les formules usuelles relatives a I'estimation par maxi-
mum de vraisemblance du modele WLS :

g = (X'D'X)'X'D7y

Var(f) = o*(X'D7'X)7!
Var(é) = o*PDP,P=1,— (X'D'X)"'X'D™!
52 _ (Y- XP'DTUY - Xp)?
n—p

Comme on I’a déja vu, un des problemes de ce type de données est que
I'on dispose en général d’une seule réalisation, c’est a dire de 1’observation
du couple (X,Y) en n sites. Sans autre restriction sur ce modele, on a n
observations pour estimer n -+ w parametres d’ou la nécéssité de réduire
le nombre de parametres.

Une premiere restriction consiste a exprimer la tendance p comme une fonc-
tion des coordonnées géographiques ou de régresseurs (avec éventuellement
des régresseurs spatialement décalés), ou encore une combinaison des deux.
Les autres restrictions vont porter sur la modélisation de la structure de

covariance V.
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Etant donnée une matrice de voisinage W normalisée et une variable
Z, la variable spatialement décalée W Z présente automatiquement une au-
tocorrélation spatiale avec Z. La famille des modeles spatiaux simultanés
consiste a introduire une telle variable dans le modele non spatial OLS ou
WLS & divers endroits de I’équation (7.1). On obtient ainsi les modeles sui-
vants :
— introduire WX en explicative dans le modele WLS conduit au modele
SLX, (en anglais “spatially lagged-X model”)
— introduire WY dans le membre de droite du modele WLS conduit au
modele LAG (pour “lagged-Y model”)
— introduire WX dans le modele LAG conduit au modele SDM (pour
“Spatial Durbin”)
— utiliser le modele LAG pour le terme d’erreur conduit au modele SEM
(pour “Spatial Error model”)
— combiner les modeles LAG et SEM models conduit au modele général
SAC
— introduire We dans le modele WLS conduit au modele MA (pour
“moving average” )
— combiner les modeles LAG et MA conduit au modele SARMA.
Nous nous concentrerons dans la suite sur les modeles de base LAG, SDM
et SEM. Mais dans un premier temps écrivons le descriptif de chacun des
modeles ci dessus en s’efforcant de comparer les différentes modélisations de
la tendance pu et de la variance V' dans chacun d’eux.

7.1.1 Le modéle SLX

Une premiere facon simple d’introduire de 'interaction entre unités spa-
tiales est d’introduire une variable spatialement décalée parmi les explica-
tives :

Y =XB+WZi+e,

ol comme précedemment € est centré de matrice de variance-covariance
diagonale Var(e) = 02D, la diagonale de D contenant la pondération. L’ob-
servation Y pour une unité spatiale donnée est donc ainsi expliquée par la
valeur de X pour cette unité et par la moyenne des valeurs de Z pour les
unités voisines. Par exemple, la production d’une région peut étre expliquée
par la disponibilité du travail et par le montant du capital public dans les
zones voisines. L’ajustement de ce modele peut se faire par moindres carrés
ordinaires (OLS). Attention : si W est normalisée, il ne faut pas que la
constante apparaisse a la fois dans X et dans Z sous peine de non identifia-
bilité. Z peut étre égale ou différente de X. On obtient pour p et V :

p=XB+WZs
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et
V =a?D.
7.1.2 Le modele LAG

Le modele LAG consiste & prendre en compte pour expliquer la valeur
de Y sur une unité spatiale donnée non seulement les explicatives X mais
aussi la moyenne de Y dans les zones voisines ce qui conduit a

Y =pWY + X +¢,

ol € est un bruit blanc spatial, WY est la variable endogene spatialement
décalée, (I — pW)Y est la variable endogéne spatialement filtrée. Le pa-
rametre p est lié a Iautocorrélation spatiale présente dans Y.

Si la matrice (I — pW) est non singuliére, le modele prends la forme réduite
suivante

Y = —pW) ' XB+ (I —pW) e
On obtient alors aisément pour p et V :

p=(—-pW)'Xp

Var(Y) = o®{(I — pW')(I — pW)} .

Notons que cette formule de variance implique la présence d’hétéroscédasticité
meéme si les erreurs € sont homoscédastiques.

7.1.3 Le modeéle SDM

En ajoutant au modele LAG une variable explicative spatialement décalée
on obtient le modele SDM

Y = pWY + XB+WZ5 +e,

ou € est un bruit blanc spatial. Sa forme réduite s’écrit
Y = —pW) N XB+WZ8) + (I —pW) te.
Les expressions suivantes en découlent pour et V :
p=(—pW) (X8 +WZs)

et
Var(Y) = o*{(I — pW')(I - pW)} .

Notons que lorsque le parametre p est nul, le modele SDM devient un modele
SLX.
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7.1.4 Le modeéle SEM

Le modele SEM introduit 1’ autocorrélation spatiale dans le processus
des erreurs

Y=X5+e¢ (7.2)
e = A\We+U, (7.3)

ol U est un bruit blanc spatial. Le parametre A est lié a lintensité de
l'autocorrélation spatiale présente dans les erreurs résiduelles.
On peut écrire ce modele de fagon équivalente :

(I = AW)Y = (I —A\W)XB+U.

Si la matrice (I — AW) est non singuliere, ce modele admet la forme réduite
suivante

Y =XB+ (I - W)U

On en déduit aisément 'expression de y et V :

p=Xp

Var(Y) = o?{(I = \W')(I — AW)} L.

Comme pour le modele LAG, cette variance implique une hétéroscédasticité
automatique méme si les erreurs € sont homoscédastiques.

7.1.5 Le modele SAC
En combinant les modeles LAG et SEM, on obtient le modele SAC

Y=pWY +XB+e¢
€ = A\Wae+ U,

Si la matrice (I — AW) est non singuliere, ce modele admet la forme réduite
suivante

Y =1 - pW) I XB+ T — pW) LI - M\Wo)~U
On en déduit aisément ’expression de p et V' :
p=(—pW)'Xp
et

V= [(I = AW{)(I — pW3)(I — AWa)(I — pW7)] ™
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7.1.6 Le modeéle SARMA

On peut comme en séries temporelles construire un modele moyenne
mobiles en faisant intervenir a droite de I’équation de régression les erreurs
spatialement décalées, c’est a dire We. Le modele MA s’écrit

Yi = p+ XY wije; + € ol € est un bruit blanc spatial, E(e) =
0,Var(e) = 0?D (D matrice diagonale). Alors on a V = o2(I,, + \W)D(I,, +
AW,

En combinant ce modeéle avec un modéle LAG, on obtient

Y =pWY +XB+e¢
€ = (I, + \Wa)u,
ol € est un bruit blanc spatial.
On obtient alors
p=(In — le)_lXﬂ
et
V = o*(I, — pW1) "N (I, + AW2)D(I, + A\Wa)' (I, — pW7) .

7.2 Maximum de vraisemblance dans les modeles
SAR

Nous allons développer la méthode du maximum de vraisemblance pour
Iestimation des coefficients dans les modeles de la famille SAR. Notons
cependant qu’il existe d’autres méthodes telles la méthode 2SLS (moindres
carrés en deux étapes) ou la méthode GMM (méthode des moments généralisés
que nous ne verrons pas dans ce cours).

7.2.1 Conditions sur les coefficients

Dans la famille des modeéles simultanés autorégressifs SAR, on a vu que
la condition de non singularité de la matrice filtre I — pW est omniprésente.
Cette condition va impliquer des contraintes sur les coefficients, p dans le
modele LAG et A\ dans le modele SEM. Soient wynin €t Wiae respectivement
les valeurs propres plus faible et plus grande de la matrice de voisinage W
(celles-ci peuvent étre complexes si W n’est pas semblable a une matrice
symétrique).

Si W est symétrique, les conditions

<p< L ,

Wmin Wmazx
sont suffisantes pour la non-singularité de I — pWW . Notons que comme
(trace(W) = 0, on a que wyin < 0 et Wyee > 0). Si W est normalisée, alors
Wmaz = 1 et p € [0, 1] est une condition suffisante pour la non-singularité de
I—pW.
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7.2.2 Maximum de vraisemblance dans le modele LAG

Rappelons que pour une matrice de voisinage normalisée donnée, et pour
une variable Y donnée, le vecteur WY appellé variable spatialement décalée
associée a Y, représente la moyenne des observations sur les unités spatiales
voisines au sens de W. Il est donc naturel de penser que la valeur de Y
peut dépendre de celle de ses voisins WY'. Si 'on centre Y pour éliminer la
constante, on peut imaginer le modele suivant

Y =pWY +e,

ol le parametre p mesure 'influence moyenne des voisins sur une unité spa-
tiale ou encore l'intensité de l'interaction entre Y et ses voisins. € contient
la variabilité de Y non expliquée par le voisinage et sera modélisé ici par
une variable de coordonnées i.i.d. Pour modéliser la moyenne de Y, on peut
naturellement envisager aussi de rajouter a ce modele des variables explica-
tives

Y =pWY + X3 +¢

WY est la variable endogene décalée et (I — pW)Y la variable endogene
filtrée. Notons que si la matrice (I — pW) est non singuliere, ce modele
admet 1’écriture équivalente suivante

Y = (- pW) X3+ (I —pW) e
On a donc I'expression suivante pour la moyenne et la variance

(I pW)~' X5,

Var(Y) = ®{(I - pW')(I — pW)} .

Notons que cette variance implique une hétéroscédasticité méme dans le cas
ou les erreurs sont homoscédastiques.
Il y a dans ce modele des contraintes sur le parametre p qui sont

<p<

)
)\maac

)\min
oll A\pin €t Apmaz représentent la plus petite et la plus grande valeur propre
de la matrice de voisinage W.
On montre aisément que les estimateurs des moindres carrés ordinaires sont
biaisés dans ce modele et c’est pourquoi on doit recourir au maximum de
vraisemblance. Sous I’hypothése de normalité des erreurs € ~ N(0,021), la

vraisemblance dans ce modele s’écrit

Ly | 0,0%) = 5 det(T—pWV) exp{5 (5= XBY (T-pW ) (I=pW)(y=XB)},

2mo™
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d’ou la log-vraisemblance

log L(y | p,0?) = — log(27r)—nlog(a)—|—log(alet((I—pVV))—T‘2

Si 'on dérive par rapport a o, 8 et p, on peut obtenir 1’ expression suivante
de 6 et B en fonction de p

1 A

52(p) = —(y = XB(p) (I = pW)'(I = pW)(y = XB(p)),

et

Blp) = (X'X)X"(I — pW)Y.

Lorsqu’on reporte ces expressions dans le log-vraisemblance, on obtient ce
qui s’appelle la log-vraisemblance concentrée qu’il reste & minimiser par
rapport a p et qui vaut a constante pres

log L(y | p) = log(det((I — pW)) — 5 log(y — pWy)'(y — pWy).

Cette vraisemblance concentrée doit étre optimisée numériquement et le
probleme principal est celui de I’évaluation du terme en log déterminant
log(det((I — pW)) qui peut étre couteux lorsque le nombre de sites devient
grand : il faut alors recourir a des approximations de ce terme.

calcul du biais du beta chapeau OLS dans ce modele (asymp sb au voisinage
de zero)

7.2.3 Maximum de vraisemblance dans le modele SEM
Considérons a présent un modele SEM
Y =XG+e¢
e=\We+ U,

ol U est une variable de coordonnées i.i.d. Le parametre A mesure l'intensité
de I'autocorrélation spatiale entre les résidus.

Notons que si la matrice (I — AW) est non singuliere, ce modele admet les
écritures équivalentes suivantes

Y =XB+ (I - W)U

ou encore

(I = AW)Y = (I —A\W)XB+U.

On a donc I'expression suivante pour la variance
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Var(Y) = o?{(I = \W')(I — \W)} L.

Notons que cette variance implique une hétéroscédasticité (les éléments de
la diagonale ne sont pas constants) méme dans le cas ou les erreurs U sont
homoscédastiques.

Il y a dans ce modele des contraintes sur le parametre A qui sont

<A<

Amm )\ma:r

)

ol Amin €t Admae représentent la plus petite et la plus grande valeur propre
de la matrice de voisinage W.

Silon pose A=I1—-AW,onaalorsY = X3+ A teet e = A(Y — Xp).
Sous I’hypothese de normalité des erreurs U ~ A(0,021), la vraisemblance
de Y s’écrit alors :

) = Sde) | det(S5) |
= fe(e)det(A)
B 1 || e H2 Oe
= mexp( )‘dt(ayﬂ

7.3 Interprétation des coefficients

Dans un modele linéaire ordinaire Y = X + ¢, les dérivées des coor-
Oui  _
Du — g pour

tout 7 et k et 8y, =0, pour tout k et j # i.

By 8 1nterprete class1quement comme l'accroissement de E(Y) quand la
k-eéme variable explicative augmente d’une unité toutes choses égales par
ailleurs. Le modele SEM se comporte exactement de la méme fagon.

Par contre, dans le modele LAG, ce n’est plus le cas et un changement
de la variable explicative dans une unité spatiale peut se répercuter sur
les Y de toutes les autres unités. L’écriture de LAG par composante est
yi = > 0 1 St(W)iuxy + &, ou p est le nombre de variables explicatives, z;
est la j-eme colonne de la matrice X et &€ = (I — pW)~!

Alors, les dérivées partielles de E(y;) par rapport a z;; sont

IE (y:)
81’]-,5

= S (W);j.

On remarque d’abord que la dérivée croisée de la i-eme composante E(y;)
par rapport a xj; pour j # ¢ n’est plus nulle mais égale a Sy (W);;.

On en déduit qu'un changement sur I'une des variables explicatives pour
I'individu ¢ va affecter non seulement y; mais aussi tous les y;.
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De plus, leffet sur E(y;) de 'accroissement d’une unité de la j-éme compo-
sante de la variable explicative xj; n’est plus constant sur les . On définit
alors trois mesures résumant ces effets.
L’impact direct moyen = ZZ 1 ag:myl mesure ’effet moyen sur chaque
composante de E(Y') de Paccrolssement d’une unité de xi pour l'individu 4
et la variable t.

OE(y:)

L’impact indirect moyen ou “spillover” % Z# i 9z, mesure I’effet moyen
J

sur chaque composante de E(Y') de I'accroissement d’une unité de x;; pour
tous les individus j # ¢ et la variable t.
L’impact moyen total , égal & 1 =D ivj amyi), est la somme de l'impact

direct moyen et de 'impact mdlrect moyen et mesure ’effet moyen de 'ac-
croissement de x; d’une unité pour tous les individus.

7.4 Le modele conditionnel autorégressif CAR

Ce modele, issu de la littérature géostatistique, est aussi utilisé pour des
variables surfaciques. Contrairement aux autres modeéles décrits précedemment
dits simultanés, ce modele est défini par une contrainte de type markovien
sur la loi conditionnelle de Y; sachant la valeur de Y pour les autres sites

n
Yi | Vi, Vi Yign, oo Yo o N+ )i (V) — 1), 7).
j=1
ol
— C = (cij) et D = diag(tZ, - K 72) doivent satisfaire les deux condi-
tions D~1C symétrique et D~1(I — C) définie positive.
— p s’exprime par une combinaison linéaire d’explicatives y = X3
De facon équivalente dans le cas gaussien on peut écrire

Y ~ N(XB,7%(I — C)™'D)

Pour le modele CAR a un parametre CAR(1) C' = pW avec W matrice de
voisinage, la variance s’écrit alors V = 72(I,, — pW)™!
En faisant une hypotheése gaussienne, on peut écrire le modele SAR

Y ~ N((I = pW) ' XB,0*{(I — pW') (I — pW)} )
et le modele CAR
Y ~ N(XB,72(1 - C)7h)

d’ot1 la méme structure de covariance en posant C = p(W + W') — p?WW’
et 0 = 7 mais des moyennes modélisées de facon différente.

L’estimation des parametres de ce modele se fait par maximum de vraisem-
blance. Ecrivons la spécification CAR model composante par composante

n
Vi [ Vi, Yo, Yign, oo Yo o N+ Y e (Y — p15), 77)
j=1
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En supposant les variances conditionnelles connues a un facteur pres 7'142 =

72¢; et en posant ® = diag(¢1,-- - , bn), alors D = 72®.

On introduit la transformation Y = ®1/2Y, X = & 1/2X et C = &~ 1/2001/2,
de sorte que le modele se simplifie en Y ~ N (X3, 72(I — C)™1)

Les estimateurs du maximum de vraisemblance de (3, 7, p) peuvent alors se
calculer en maximisant la vraisemblance des données transformées

(7= XB)(1-C)(7 - Xp)

LL = —g log(2772) — log det(I — pW)~1/2 —
Premiére étape : pour le modele CAR(1), C = pW et C = pd~'2Wo!/2,
A p fixé, la maximisation de LL par rapport a (3, 7) est explicite

Bp) = (X'(I-C)X)'X'(I-C)Y (7.4)
#2(p) = (V — XB)(I - C) (Y — XB)/n (7.5)

Deuxieme étape : on substitue ces valeurs dans LL pour obtenir la log-
vraisemblance dite concentrée

“LL(p) = g(log(27r) 1) + logdet(I — pW)~ V2 4
g log{Y (I — C){I — X(X'(I — &)X)"1X'(I — C)}Y /n}

La maximisation de LL(p) est faite de fagon numérique. Comme pour les
modeles simultanés, la difficulté réside dans I’évaluation du terme log det (I —
pW)~1/2. Les conditions sur D et C' impliquent des restrictions sur p qui sont
les mémes que pour le modele LAG. Une fois p estimé, on obtient facilement
3 et 72 en insérant (7.4) et (7.5).

7.5 Modélisation géostatistique

Dans la littérature géostatistique, ’approche classique consiste a modéli-
ser tendance et fluctuation en deux étapes. On commence par ajuster une
tendance par exemple en ajustant des polyndémes des coordonnées spatiales
ou d’autres variables explicatives. On retranche ensuite celle-ci pour obtenir
une fluctuation estimée. On ajuste ensuite un variogramme (comme on ’a vu
au paragraphe 4.1) a la fluctuation. L’approche “model-based geostatistics”
développée par Diggle et Ribeiro (2007), permet d’étendre ces modeles aux
cas ou la distribution de Y n’est plus gaussienne, et propose une estimation
par maximum de vraisemblance en une seule étape.

7.6 Approximation du terme en log-déterminant

Il existe plusieurs méthodes :
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— une approximation par troncature de série (Martin, 1992)

logdet(1 — pW) = tr(logdet(Z — pw)) = — 3 i TV

4 7
i=1

— Pace and Barry (1997, 1999) font une approximation par Monte Carlo
en utilisant la décomposition de Cholevsky pour profiter de la lacuna-
rité de W

— Pace and LeSage (2004) utilisent une approximation de Chebyshev

— Cressie, Perrin and Thomas-Agnan (2005) proposent une approche par
simulation dans le contexte des modeles CAR.

7.7 Les méthodes MWR et GWR

La régression par fenétre glissante MWR et la régression geographique-
ment pondérée GWR sont des méthodes d’estimation locales. L’idée est de
choisir une fenétre centrée sur le point d’intérét et d’utiliser seulement les
observations qui sont dans cette fenétre pour estimer la régression au point
d’intérét. En se sens il s’agit de méthodes localement linéaires ot le local se
mesure dans ’espace géographique et non dans I'espace des régresseurs.
Dans I’esprit des méthodes non paramétriques, GWR utilise une pondération
avec une fonction noyau qui a pour effet de faire décroitre I'influence d’un
voisin donné en fonction de sa distance au point d’intérét. On peut aussi uti-
liser une fenétre adapatative dans la fonction noyau pour éliminer les effets
de la densité locale de points. C’est le cas par exemple pour la pondération

: a9 .. - , . .
suivante wi; = (1 — 2#)? si j est I'un des voisins de i et 0 sinon ol d est la

distance de i & ses k plus proches voisins (k est choisi par validation croisée)
ce qui assure que chaque fenétre contient le méme nombre d’observations.
Notons que MWR et GWR ne modélisent que I’hétérogénéité spatiale
et non 'autocorrélation.

7.8 Tests de spécification, comparaison de modeles

7.8.1 Autocorrélation des résidus

Outre le test de Moran des résidus d’une régression OLS ou WLS, il
existe d’autres tests comme les tests du multiplicateur de Lagrange donnés
par les formules

LM (err) = {We/a®}? /tr(W'W + W?)
dans le cas du modele SEM en alternative et

LM (lag) = {WY/c?}2 J{(WXb) MW Xb/o? + tr(W'W + W)},
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dans le cas du modele LAG en alternative, ot e désignent les résidus et
W une matrice de voisinage. Sous ’hypothese d’absence d’autocorrélation,
LM err) et LM (lag) suivent asymptotiquement une loi de x?(1). On peut
aussi tester ’hypothese Hy : A = p = 0 dans le modeéle complet par le test
du multiplicateur de Lagrange et la statistique obtenue SARMA converge
alors vers un x2(2).

IL existe des versions dites robustes de ces tests. La statistique RLM (lag)
permet de tester le modele SEM en hypothese nulle contre le modele complet
SAC en alternative. De méme, la statistique RLM (err) permet de tester le
modele LAG en hypothese nulle contre le modele complet SAC en alterna-
tive.

Voyons comment utiliser les tests de Lagrange pour orienter le choix de
modele. Si par exemple, les deux tests LM(err) et LM(lag) sont significatifs,
mais lorsqu’on regarde les versions robustes, c’est le test RLM(lag) qui est
le plus significatif : on se dirige alors vers un modele LAG.

7.8.2 Tests sur les coefficients

Notons qu’il existe dans ces modeles une expression de la matrice de

variance-covariance asymptotique des estimateurs des coefficients. On va
s’intéresser aux tests d’ hypotheses de la forme Hy : g(f) = 0, ou 6 est le
vecteur des parametres. Par exemple 0 = (p, 3,0%) dans le modele LAG et
si I'on s’intéresse a '’hypothese Hy : p = 0, cela revient a tester le modele
OLS contre le modele LAG.
Les trois types de tests classiques peuvent étre utilisés pour cela : le test de
Wald Wa (ou asymptotic t-test), le test du rapport de vraisemblance LR et
le test du score ou de Lagrange LM. Si g est une contrainte de dimension ¢,
les trois statistiques de test correspondantes suivent asymptotiquement une
loi de x?(q) et les trois tests sont asymptotiquement équivalents. Notons que
Wa et LR nécéssitent ’estimation du modele non contraint alors que LM
n’est fonction que de l'estimation du modele contraint (souvent OLS).

7.8.3 Stratégies de choix de modele

Une fois un modele spatial LAG adopté, le test du multiplicateur de La-
grange LM (err)* permet de tester s’il est nécéssaire d’introduire également
une autocorrélation spatiale des erreurs. De méme, une fois un modele spa-
tial SEM adopté, le test du multiplicateur de Lagrange LM (lag)* permet
de tester s’il est nécéssaire d’introduire également une variable endogene
décalée. Notons qu’on ne peut utiliser un test du rapport de vraisemblance
que si les modeles sont emboités.
Pour comparer des modeles non emboités, on peut aussi minimiser les criteres
usuels d’Akaiké et de Schwartz qui s’expriment en fonction de la log-vraisemblance

64



AIC = —2log(L) + 2k, BIC = —2log(L) + log(nk),

ou k est le nombre de parametres.

Notons bien qu’il n’est pas légitime de faire un test de Moran pour tester
I’autocorrélation spatiale des résidus d’une régression spatiale, mais on peut
a titre descriptif faire un Moran plot de ces résidus. Pour finir, notons qu’une
matrice de voisinage mal spécifiée peut engendrer de I’autocorrélation spa-
tiale dans les résidus sans que pour autant le type de modele soit a remettre
en cause.

7.9 Prédiction dans les modeles spatiaux

7.9.1 Dans les modeéles de la famille SAR

Dans un modele non spatial ajusté par WLS, on calcule la prédiction de
la variable Y avec la formule g = xB, que z soit un des points observés dans
I’échantillon ou pas et cette prédiction correspond a la meilleure prédiction
linéaire sans biais (BLUP).

Dans un modele spatial, a cause de la présence d’autocorrélation spatiale, la
meilleure prédiction linéaire sans biais ne se calcule plus ainsi et doit prendre
en compte les autocorrélations (en particulier elle nécéssite le calcul des
matrices de poids croisées correspondant a l’ensemble des points constitué
des points de 1’échantillon et des points ou 'on veut prédire). Il faut donc
se garder d’appliquer la formule § = xB .

Pour un point de I’échantillon, Bivand (2002) utilise la formule suivante

Y = X3+ pWy,
formule qui n’est qu’une approximation du BLUP.

7.9.2 Dans les modeles géostatistiques : le Krigeage

Dans le modele géostatistique classique, le modele Y = p + € devient le
modele “signal plus bruit” suivant. Le signal est un champ X qui est ’'objet
d’intérét sur lequel on veut faire de I'inférence et il présente lui-méme une
tendance u = m(s) = E(X;) et une structure d’autocovariance donnée par
la fonction o(s,t) = Cov(Xs, X¢). Il est observé avec un bruit additif € en

un nombre fini de localisations s;,7 =1,--- ,n, d’ou
Yv&; - Xsi + 67;,
ol ¢; sont des réalisation d’un bruit i.i.d. de moyenne nulle et de variance
2
o

L’objectif est de
— estimer la tendance m(s) = E(Xj),
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— prédire les valeurs de X en une localisation s qui n’est pas nécéssairement
parmi celles observées ou plus généralement prédire [, w(s)X ds.
— calculer des erreurs de prédiction
La méthode de Krigeage consiste a utiliser comme prédicteur celui qui
possede la propriété d’optimalité suivante : il doit minimiser ’erreur qua-
dratique de prédiction parmi les prédicteurs linéaires sans biais. On 'appelle
le BLUP pour “Best Linear Unbiased Predictor”. On suppose dans un pre-
mier temps que la structure de covariance o est connue. En pratique il faut
I'estimer au préalable. L’optimalité se traduit par les conditions suivantes.
Ce prédicteur de X, est une combinaison linéaire Y* of ¥; =Y, satisfaisant
— Y™ est sans biais E(Y™*) = E(Xj)
~ Y* a la plus petite erreur de prédiction min E(Y* — X,)? parmi les
prédicteurs linéaires sans biais.
Introduisons les notations suivantes
— ¥ est la matrice de terme général o(s;, s;),
— Y est le vecteur o(s;, )
— Y est le vecteur (Y1, --,Y,).
On utilise le résultat suivant : ¥ est inversible des que les localisations s; sont
distinctes et que la fonction d’autocovariance est strictement défini positive.

Krigeage simple - Cas du modéle sans bruit

Considérons d’abord le cas ou il n’y a pas de bruit ¢ = 0. De plus
supposons d’abord que la tendance est constante et connue m(s) = u et on
parle alors de Krigeage simple ; on peut alors supposer la moyenne nulle. On
montre alors que le BLUP est donné par

Yi = Zn: i)Y
i=1

avec
M (s) =27ix,

L’erreur de prédiction est alors égale a

E(Y) — X,)? = o(s,5) — \*(s)'Zs.

En effet
E(Y? - X,)? = Var(Y?—X,) = Var(zn: Ai(8)Y; — X5) (7.6)
i=1
= Z Z Ai(s)\j(s)o(si,s5) — 2 Z Ai(8)o(si, s) +o(s,s).
=1 j=1 i=1
8)\1(8)E(Y; *Xs) —ZZA](S)O'(SZ,SJ) 20’(81,8> —0,



puisque
0? 2
—E(Y - X
aAZ(S)a)\](S) ( 5 5)
et donc la matrice hessienne est égale a 2¥ et donc définie positive ce qui
« 2
assure que E(Zs — Ys) est convexe. Donc

= 20’(Si, Sj),

ZA;(S)U(Sth) =o(s;,s)  i=1,...,n
=

ou en notations matricielle

SA*(s) = 5. (7.7)

M (s) = 27ix,.

L’erreur de prédiction se calcule alors par

E(Y; - XS)2 = Z Z AF(8)NS(8)o (51, 55) — 22 Ni(s)o(si, s) 4+ o(s, s)
i=1

i=1 j=1
= A (8)ZN*(s) — 2X*(8)Es + o (s, 8)
N (8)' 25 — 2X*(5)'Ss + o (s, 8)
= o(s,s) — \*(s)'2s.

Ce prédicteur interpole les valeurs du champ dans le sens suivant Y;* =
Y;. Cela semble logique au vu du fait que le bruit est nul. Notons que ce
prédicteur est une moyenne pondérée des valeurs observées. Le vecteur g
a pour effet que le point s; contribue d’autant plus a la prédiction de X
que s; est proche de s (proche impliquant plus corrélé). La matrice X1 a
pour effet que les points isolés sont pondérés plus fortement que les points
agrégés en groupes. On remarque que \*(s) = L1, doit étre calculé pour
chaque localisation s pour laquelle on souhaite une prédiction mais dans
la formule de prédiction Y = M\ (s)Y = X.%71Z, le produit X717 est
commun a toutes les prédictions et n’a besoin d’étre calculé qu'une fois.
La figure suivante montre un exemple de krigeage en dimension un avec un
variogramme exponentiel et un modele non bruité.
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covariance

Krigeage simple - Cas du modele bruité

Des argumens similaires aux précédents montrent que la solution est données
par les mémes formules mais en remplagant o (s;, s;) par o (s, s;) +28o(s; —
s;), et en laissant o(s;, s) inchangé. Si o2 est non nul, ce prédicteur n’in-
terpole plus les valeurs observées ce qui est intuitivement logique. La figure
suivante montre un exemple de krigeage en dimension un avec un vario-
gramme gausien et un modele bruité.

covariance
I I I I I
3

0.0

00 02 04 06 08 10
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Krigeage ordinaire - Cas du modeéle non bruité

On parle de Krigeage ordinaire loesque la tendance m(s) = p est tou-
jours constante mais inconnue. Le champ X, est supposé intrinsequement
stationnaire de vartiogramme .

Le prédicteur BLUP est alors donné par

Yo = En: Ai(8)Yi
1=1

avec les coefficients \*(s) solution du systeme linéaire

Y Ni(s)o(si—s;) +n = ols,s) (7.8)
J
in(s) =1

pouri=1,---netl=0,---L.
L’erreur de prédiction est égale a

E(Y} — X,)? =o0(s,s) — Z Ai(s)o (s, s) — .

On peut aussi écrire ce systeme en fonction du variogramme (au lieu de la
covariance)

Y Nisi—s) +p = (s, i) (7.9)
j

Z Ai(s) = 1

et Perreur de prédiction est alors

(Y] = X2 = 3 M(s)1(s0.0) +

En effet
Var(Y) — X,) = Var(i)\i(s)yi - X,
i=1
= ZZ)\i(S))\j(S)O'(Si,S]’) — 22)\1.(8)0(8“ §) + o(s, )
=1 =1 i=1
= Zn: zn: )\i(s))\j(s)<0(8i7 si) + a(sQ sj) —(si, Sj)>
i=1 j=1
n o(8i,8i) +0(s,8) —v(8i,8)
_2;)\i(s)< . ) +o(s,9)
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Var(Yy — X,)

= D> hils)X(s)

o (s, 5i) J; o(s5:55) _ % Z D ()X (5)(si, Sj)]

i=1 j=1 ==
_ Z Ai(s)o(si,si) + Z i(8)v(siy8) + (1 — Z /\i(S))O'(S, 5)
=1 i=1 i=1
- —% SN XN ()v(sins5) + D Ails)v(si, ).
i=1 j=1 P

Ce modele peut étre généralisé au cas du Krigeage dit universel lorsque la
tendance m(s) n’est plus constante mais s’écrit comme combinaison linéaire
de polynomes des variables spatiales a coefficients inconnus et lorsque la
structure de covariance est intrinsequement stationnaire d’ordre r.

7.10 Modeles de régression pour semis de points

La premiere étape de la modélisation d’un semis de points est le test de
CSR. En effet, si celui-ci n’est pas significatif, on pourra adopter un modele
Poissonnien facile & manipuler alors que dans le cas contraire, il faudra se
tourner vers des modeles avec interaction. Dans ce dernier cas, le choix d’un
modele spécifique se fait en utilisant quelques outils exploratoires comme
la fonction de corrélation des paires. La modélisation de I'intensité prends
toujours la forme suivante

k
Aaz) = eXp(Z 0, Z(x)),

ou Zj, sont des facteurs explicatifs et 6 les parametres correspondants.

Il reste ensuite a estimer les parametres du modele : ceux de 'intensité et
ceux de la structure d’interaction. La méthode du maximum de vraisem-
blance est difficile a appliquer sauf dans quelques modeles particuliers en
raison de la présence de la constante de normalisation difficile & évaluer.
Une approche possible, similaire a la classique méthode des moments est
de choisir une caractéristique du semis comme par exemple la fonction K
de Ripley et de faire des moindres carrés entre la fonction théorique K
qui dépends des parametres et la fonction empirique correspondante pour
déterminer les meilleurs parametres. Une autre approche consiste a approxi-
mer la constante de normalisation par des méthodes de Monte Carlo. Enfin,
une autre possibilité est d’utiliser le pseudo-maximum de vraisemblance qui
consiste a remplacer la vraisemblance par le produit des densités condition-
nelles.
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La derniere étape consiste enfin en la validation du modele et cela se fait
généralement par la méthode des enveloppes basée sur des simulations. Cette
méthode consiste d’abord a simuler un grand nombre M de réalisations du
modele ajusté et a déterminer si la fonction K de Ripley (version inho-
mogene) estimée tombe dans 'enveloppe des fonctions K associées aux M
simulations du modele supposé. Dans la pratique on utilise souvent M = 19
ou 99. Si pour une valeur de la distance r, dans I’étendue des valeurs ob-
servées dans la fenétre, la courbe K observée sort de ’enveloppe, le modele
est rejeté. Le pseudo niveau de signification empirique associé a ce test est
de ﬁ ce qui conduit & 0.05 pour M = 10 et a 0.01 pour M = 99.
Remerciements. Ce document, qui est la trame d’un ouvrage, a été effectué
en collaboration avec Thibault Laurent et Anne Ruiz-Gazen de 1'université
Toulouse 1 Capitole, Toulouse School of Economics.
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