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4.2.3 Matrices basées sur les plus proches voisins . . . . . . 31
4.2.4 Matrices basées sur triangulation de Delaunay . . . . 31
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7.1.4 Le modèle SEM . . . . . . . . . . . . . . . . . . . . . . 56
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7.9.2 Dans les modèles géostatistiques : le Krigeage . . . . . 65
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Chapitre 1

Introduction : nécessité de la
prise en compte de la
dimension spatiale

Les données spatiales ou géoréférencées sont des données comportant une
dimension spatiale, c’est à dire pour lesquelles une information géographique
est attachée à chaque unité statistique. L’information géographique est en
général la position de l’unité sur une carte ou dans un référentiel spatio-
temporel et peut par exemple prendre la forme de latitude et longitude ou
de coordonnées UTM. Un traitement statistique de telles données qui ignore
cet aspect ou l’intègre de façon inadéquate peut resulter en une perte d’in-
formation, des erreurs de spécifications, des estimations non convergentes et
non efficaces. En effet, il ne suffit pas de juxtaposer l’analyse géographique
à l’analyse statistique, il faut les faire interagir. Les systèmes d’information
géographiques sont des outils sophistiqués qui permettent de faire de la car-
tographie professionnelle mais ils n’intègrent en général que des méthodes
statistiques élémentaires (histogrammes, camemberts). Les outils propres à
la statistique spatiale que nous allons exposer font intervenir la position spa-
tiale à part entière dans leur définition.

Les domaines scientifiques privilégiés d’application de ces méthodes sont
l’économie, la géographie, la sociologie, l’épidémiologie, la géologie, la météo-
rologie. On trouve également des applications dans le secteur industriel avec
l’industrie pétrolière et dans le tertiaire avec le géomarketing. Voici quelques
exemples. En prospection pétrolière, il est utile de prédire la quantité de
pétrole potentielle en un lieu donné en fonction de prélèvements effectués
en certains points répartis sur une zone pour optimiser l’emplacement des
forages. En économie urbaine, l’ajustement de modèles hédoniques qui ex-
pliquent le prix d’une transaction en fonction des caractéristiques du bien
immobilier mais aussi des caractéristiques socio-économiques ou autres de
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leur lieu d’implantation permet de mieux comprendre ce qui influence le
marché immobilier. En aménagement du territoire, on peut vouloir étudier
la répartition spatiale des établissements scolaires et chercher à augmenter
l’efficacité du système scolaire en choisissant au mieux le lieu d’implantation
de nouveaux établissements. En ce qui concerne l’environnement, la produc-
tion de cartes de prédiction de niveaux de pollution utilise les outils de la
géostatistique.

La distinction entre statistique spatiale et économétrie spatiale provient du
fait que traditionnellement, les techniques de statistique spatiale se sont
développées d’abord en géostatistique (au départ la statistique pour géologues)
et concernent des données de nature différente de celles étudiées en économie
comme nous le verrons en détail dans le chapitre suivant. Néanmoins on fait
souvent référence à la statistique spatiale pour désigner l’ensemble de ces
méthodes. Du point de vue historique, la géostatistique est née de l’indus-
trie minière. L’ingénieur africain D.G. Krige s’est rendu célébre pour les
estimations de gisements d’or (1951) et a donné son nom à la méthode de
Krigeage. Ce domaine a ensuite été développé par l’école française de Fon-
tainebleau avec G. Matheron et ses collaborateurs.
Quelques manuels de référence dans ce domaine sont : N. Cressie (1993),
J. LeSage et K. Pace (2009) pour l’économétrie spatiale, Diggle (2003) et
Illian et al. (2009) pour les semis de points et R. Bivand et al. (2008) pour
l’implémentation en R.
L’outil de modélisation des données géoréférencées est le champ aléatoire.
Lorsqu’une caractéristique X(s, ω) d’une unité statistique est mesurée en la
position s pour la réalisation ω, on notera Xs la variable aléatoire associée,
où l’indice s varie dans une partie D de Rd. La dimension d varie de 1 à 3
dans les applications courantes.

1.1 Statistique spatiale et séries temporelles

Lorsque le champ aléatoire est indexé par un espace de dimension d = 1
on utilise, plutôt que le terme de champ, le terme de processus ou de série
temporelle (le cas le plus fréquent étant celui où la variable aléatoire est in-
dexée par le temps). L’étude des séries temporelles est un domaine en soi de
la statistique et il est clair qu’il ne s’agit en aucun cas d’un cas particulier
de la statistique spatiale (les ressemblances et différences seront signalées
dans le texte). Certains des outils exposés dans ce manuel concernent le cas
général de la dimension d supérieure à 1 mais c’est quand même le cas d = 2
qui reste l’objectif principal.
Le parallèle avec les séries temporelles est cependant intéressant. En effet, ce
qui distingue les séries temporelles d’autres modèles statistiques est la prise
en compte de la dépendance entre l’observation faite en un temps t et celle
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faite en des temps voisins. Beaucoup de modèles supposent l’indépendance
entre les observations (mathématiquement parlant entre les variables aléatoi-
res associées) faites sur les diverses unités statistiques. Dans le cas d’obser-
vations temporelles, cette indépendance n’est pas une hypothèse réaliste car,
dans beaucoup de phénomènes, ce qui se passe aujourd’hui est nécéssairement
influencé par ce qui s’est passé hier et dans une moindre mesure par un
passé lointain. Par ailleurs, dans le cas des séries temporelles, l’hypothèse
de répartitions marginales identiques est aussi remise en question dans la
mesure où le phénomène peut présenter une évolution en moyenne résultant
en une non stationarité. De la même façon, les champs aléatoires spatiaux
peuvent présenter à la fois

– une autocorrélation spatiale : les variables Xs et Xt étant d’autant
plus corrélées que la distance entre s et t est petite.

– une hétérogénéité spatiale : la répartition marginale de Xs varie avec
s.

Mais à la différence des séries temporelles, les notions de passé et de futur
n’ont pas leur pendant en spatial et il n’y a pas d’ordre naturel dans Rd.

1.2 Bénéfices de la prise en compte de la dimen-
sion spatiale

Quels sont les avantages d’une modélisation adaptée aux données spa-
tiales ? Que perd-on si on ne la fait pas ? Dans le contexte d’un modèle
de régression, on verra plus loin dans le document que si le processus de
génération des données suit un modèle spatial alors que le statisticien uti-
lise un modèle ordinaire en faisant abstraction des effets spatiaux, cela peut
résulter, selon le type de processus spatial concerné, en la présence de biais
dans les coefficients de la régression, d’une absence de convergence car ce
biais n’est pas nécéssairement asymptotiquement nul, d’une inefficacité des
estimations. L’absence d’impacts indirects (effet du changement d’une va-
riable en un lieu donné sur les autres lieux) dans le modèle ordinaire peut
masquer de réels effets de débordement. De plus cela entrâıne aussi d’im-
portants biais de prédiction.

Pour illustrer le biais d’estimation des coefficients, nous prenons ici comme
exemple le découpage administratif de la région Midi-Pyrénées en 283 pseudo-
cantons. On considèrera qu’une unité spatiale est voisine d’une autre si les
unités spatiales partagent une frontière commune. On observe sur ces 283
unités une variable X simulée selon une loi N (µ = 40, σ = 10). Considérons
le modèle LAG qui sera présenté dans le chapitre 7

Y = ρWY + βX + ε,

où ε est un bruit blanc spatial et WY désigne le vecteur des moyennes de
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la variable Y dans le voisinage de chaque unité spatiale. La figure suivante
représente une exemple de simulation de Y à partir de :

Y = (I − ρW )−1(βX + ε),

en prenant ρ = 0.95, β = 50 et ε simulée selon une loi N (µ = 40, σ =
10). Nous avons également représenté les liens de voisinage entre les unités
spatiales.

Figure 1.1 – A gauche la variable Y simulée avec ρ = 0.95. A droite les
liens de voisinage entre unités spatiales.

Pour différentes valeurs de ρ, nous avons calculé le biais d’estimation du
coefficient β donné, comme on le verra dans le chapitre 7, par :

(X ′X)−1X ′(I − ρW )−1X − 1,

et la différence entre la variance de β̂ estimée dans le modèle LAG et dans
le modèle linéaire non spatial ordinaire donnée par

(X ′X)−1X ′((I − ρW )′(I − ρW ))−1X − 1,

Ces quantités sont représentées respectivement en bleue et en rouge dans le
graphique suivant en fonction de ρ.
Enfin, pour juger de l’hétéroscédasticité présente dans ce modèle spatial,
nous avons représenté pour différentes valeurs de ρ, la distribution des
éléments de la partie triangulaire supérieure de la matrice de variance de
Y dans ce modèle, donné à facteur d’échelle près par :

((I − ρW )′(I − ρW ))−1
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Figure 1.2 – Biais dans le modèle LAG en fonction de ρ. Différence entre
variances estimées dans les modèles LAG et OLS

Figure 1.3 – Hétéroscédasticité
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1.3 Rudiments de cartographie

Les données spatiales attachées à une position sur notre globe terrestre
sont généralement représentées dans un plan. Avant de réaliser leur étude
statistique, il est nécéssaire de les importer dans un logiciel d’analyse statis-
tique. Pour importer et analyser une telle base de données, il y a cependant
un minimum de connaissance cartographique à avoir. Tout d’abord, la sur-
face réelle de la terre dite géöıde est de forme patatöıde ; on l’approxime
par un ellipsöıde et il y a plusieurs approximations possibles (par exemple
ellipsöıde de Clarke). Pour dessiner une carte il faut un système de coor-
données : des axes et une origine. De plus, comme la terre n’est pas plate, il
faut choisir un système de projection cartographique. Cette projection est
une correspondance entre les coordonnées planimétriques X et Y d’un point,
mesurées sur une grille régulière, et sa latitude φ et longitude λ. La latitude
est une mesure de l’angle φ par rapport à l’équateur, la longitude est une
mesure de l’angle λ par rapport au méridien de référence. Il existe différentes
unités pour mesurer ces angles : degrés-minutes-secondes, degrès-décimaux,
radians, grades. Au besoin, l’altitude du point est mesurée au dessus du
géöıde ou du niveau local zéro des mers. La projection est la méthode de
réduction de la distorsion due à la rotondité de la terre appliquée sur une
surface plate. On distingue plusieurs sortes de projections : conique, cy-
lindrique, azimutale. Les projections les plus courantes sont : la projection
de Mercator, la projection Lambert et la projection de Mercator Univer-
selle. Un datum géodésique est la donnée d’un ellipsöıde et d’un système de
projection : citons par exemple pour l’Europe le datum ED50, système eu-
ropéen unifié. Des logiciels de conversion permettent de passer d’un système
à l’autre.
Pour illustrer les difficultés rencontrées, prenons un exemple. Dans le système
WGS 84 (World Geodetic System 1984, système géodésique mondial, révision
de 1984), les coordonnées longitude/latitude de la ville de Vitoria Gas-
teiz sont (2̊ 41’0”W, 42̊ 51’00”N) en degrés-minutes-secondes et (-2.683333̊ ,
42.85̊ ) en degrés-décimaux. Le CRS (système de coordonnées de référence)
précise le système de projection (proj=) ainsi que l’ellipsöıde considéré
(ellps=). Dans notre exemple, le CRS s’écrit :

CRS("+proj=longlat ellps=WGS84").
Il est absolument essentiel de connâıtre le CRS d’un fichier de données
spatiales. En effet, lorsqu’on travaille avec plusieurs sources de données,
il est rare que les unités spatiales soient exprimées dans un même CRS.
Par exemple, dans la Figure (1.3), les contours de la province d’Alava sont
exprimés dans le CRS("+proj=lcc +ellps=WGS84") (projection Lambert
Conformal Conic) alors que les coordonnées de la ville de Vitoria Gasteiz
sont exprimées dans le CRS("+proj=merc ellps=WGS84") (projection Mer-
cator).
Les SIG (Système d’Information Géographique) sont souvent munis d’outils
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Figure 1.4 – Exemple de problème rencontré lorsque les CRS ne corres-
pondent pas.

permettant la conversion d’unités spatiales d’un CRS vers un autre CRS.
Dans la Figure (1.3), nous avons représenté la province d’Alava dans deux
CRS différents :

CRS("+proj=longlat ellps=WGS84") et
CRS("+proj=utm ellps=WGS84") (projection Universal Transverse Mer-

cator).
L’avantage avec la projection UTM est que les coordonnées sont exprimées
en mètres et le calcul de distance entre deux points est ainsi facilité. Le
package rgdal dans le logiciel R permet d’effectuer ces transformations.

1.4 Exemple de lecture d’un jeu de données spa-
tiales avec R

Les fichiers de données spatiales sont :
– de type vectoriel, comme les fichiers Shapefile (avec une extension

.shp) ou MapInfo (extension .MIF, .MID). L’unité spatiale de référence
peut être assimilée à un point, un polygone ou un vecteur. Les unités
spatiales peuvent être associées à des attributs. Dans le cas de données
statistiques, ces attributs seront des variables (quantitatives ou quali-
tatives) observées sur les unités spatiales.

– de type raster, comme les fichiers au formats .bmp, .jpeg, .tiff, .asc.
Dans ce cas, l’unité spatiale de référence est le pixel. En parlant de
pixel, on pourra également utiliser le terme de cellule ou carreau. Une
cellule peut être associée à une (ou plusieurs) valeur(s) visualisée par
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Figure 1.5 – Représentation de la région de Vitoria dans deux CRS
différents.

la couleur.

a. Format vectoriel

Format ESRI shapefile
C’est le format de référence d’import/export pour des données géographiques

(ESRI=Environmental Systems Research Institute). Un ESRI shapefile est
formé de :

– un fichier principal (.shp) qui contient toute l’information liée à la
géométrie des objets décrits qui peuvent être : des points, des lignes
ou des polygones ;

– un fichier (.shx) qui stocke l’index de la géométrie ;
– un fichier dBASE (.dbf) pour les données attributaires (ou données

statistiques) ;
– des fichiers facultatifs comme un fichier sur les datums/projections

(.prj).
Dans le code R ci-dessous, le chargement de la librairie sp permet d’utiliser
les classes d’objet Spatial et la librairie maptools permet l’importation
de fichiers spatiaux. La commande CRS("+init=epsg:4326") de la fonc-
tion readShapeSpatial() permet d’indiquer le système géodésique utilisé.
Il s’agit ici d’une simplification du CRS("+proj=longlat +ellps=WGS84)

que nous avons vu précédemment. Le fichier correspond au découpage ad-
ministratif des régions européennes utilisé dans le cadre de la législation
européenne et représentées ici par le centröıde de la région.

> library("sp")

> library("maptools")
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> xx <- readShapeSpatial("NUTS_LB_2010.shp", CRS("+init=epsg:4326"))

> class(xx)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

xx est un objet de classe SpatialPointsDataFrame. Cela signifie que :
– les unités spatiales sont des points appartenant à la classe d’object
SpatialPoints.

– chaque point est associé à des attributs inclus dans un objet data.frame.
Pour représenter l’objet xx :

> plot(xx,axes=TRUE)

> title("NUTS-2010 region centroids")

Figure 1.6 – Représentation des centröıdes des zones NUTS (Nomenclature
of territorial units for statistics).

Pour savoir le nombre d’unités spatiales et le nombre de variables observées :

> dim(xx)

[1] 1921 4

Pour afficher les attributs des premières unités spatiales :

> head(xx@data)

NUTS_ID LAT LON STAT_LEVL_

0 EL111 41.11184 26.11046 3

1 EL112 41.16937 24.82273 3

2 EL113 41.10678 25.50045 3
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3 EL114 41.28699 24.18505 3

4 EL115 40.82641 24.33590 3

5 EL121 40.49527 22.26628 3

> plot(xx,axes=TRUE)

> title("NUTS-2010 region centroids")

Format MapInfo

Pour importer un fichier MapInfo, on utilisera la fonction readOGR() du
package rgdal (qui peut aussi être utilisé pour importer un fichier Shapefile)
de la façon suivante :

> xy <- readOGR("departements_region.mif","departements_region")

OGR data source with driver: MapInfo File

Source: "departements_region.mif", layer: "departements_region"

with 98 features and 7 fields

Feature type: wkbPolygon with 2 dimensions

> class(xy)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

Ici la classe SpatialPolygonsDataFrame indique qu’une unité spatiale est
représentée par un polygone. Il s’agit ici du découpage administratif de la
France en départements. Parmi les attributs disponibles pour cet objet, on
dispose de la population française en nombre d’habitants. Il est possible de
représenter ainsi une carte choroplèthe en utilisant le code suivant :

> plotclr <- c("#EFF3FF", "#BDD7E7", "#6BAED6", "#3182BD", "#08519C")

> breaks<-quantile(xy@data$PSDC,c(0,0.2,0.4,0.6,0.8,1))

> plot(xy,col=plotclr[findInterval(xy@data$PSDC, breaks,

all.inside=TRUE)], border=’grey’)

> legend("topleft", legend = c("[29972,230296.0[","[29972,351983.8[",

[351983.8,554093.4[", "[554093.4,966320.0[","[966320.0,2554449.0]"),

title = "Nombre d’habitants",fill=plotclr,cex=0.7)

b. Format raster

Nous allons ici importer un fichier .asc à l’aide de la fonction readAsciiGrid()

du package maptools.
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Figure 1.7 – Carte choroplèthe de la taille de la population dans les
départements français.
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> gr <- readAsciiGrid("pvgis_g13year00.asc")

> proj4string(gr)=CRS("+proj=longlat +ellps=WGS84")

> class(gr)

[1] "SpatialGridDataFrame"

attr(,"package")

[1] "sp"

L’avantage d’un objet de classe SpatialGridDataFrame est que sa structure
n’est pas complexe. En effet, il suffit de connâıtre le nombre de cellules
(nrow×ncol), la taille d’une cellule (exprimées dans un CRS donné) et enfin
les coordonnées de la cellule de référence (ou l’origine). Les valeurs associées
aux cellules peuvent ensuite être stockées dans un vecteur de taille nrow×ncol
sachant que le premier élément du vecteur correspond à la valeur observée
à l’origine. Ici, l’image représente le temps d’ensoleillement annuel moyen
observé en Europe. Pour représenter l’image :

> spplot(gr,axes=TRUE)

Figure 1.8 – Représentation d’un fichier de type raster représentant la durée
d’ensoleillement annuel moyen.
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1.5 Etapes d’une analyse spatiale

Comme dans toutes les études statistiques, l’analyse d’un jeu de données
spatial commence par une étude exploratoire. Le but de cette étude, en
sus des objectifs classiques tels que repérer les valeurs manquantes et aty-
piques, établir un premier résumé unidimensionnel de chaque variable, est
ici d’explorer l’existence de tendances et d’autocorrélations spatiales. Si
celles-ci sont mises en évidence, le reste de l’analyse s’attachera à corri-
ger de l’hétérogénéité d’une part et de l’autocorrélation de l’autre de façon
que l’analyse des impacts des facteurs explicatifs ainsi que les prédictions
éventuelles soient les plus efficaces possible.
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Chapitre 2

Divers types de données
spatiales

On distingue trois grands types de données géoréférencées : les données
ponctuelles ou de type géostatistique, les données surfaciques ou de type
économétrie spatiale et les données de type semis de points. Ils différent
d’abord par la nature de l’unité géographique attachée à chaque unité sta-
tistique, soit un lieu précis soit une surface, mais aussi par la qualité aléatoire
ou non des positions spatiales. Avant de décrire ces types plus précisément,
notons qu’il existe d’autres types moins répandus comme par exemple les
données bilocalisées ou données de flux où chaque caractéritique se rapporte
à un couple de sites. Notons qu’il existe aussi des données spatiales de type
image pour lesquelles une ou plusieurs caractéristiques sont attachées à des
pixels. Celles-ci peuvent justifier de traitements adaptés aux deux premiers
types ci-dessous mais également à des traitements spécifiques au traitement
d’image que nous n’aborderons pas dans ce document.

2.1 Données de type géostatistique ou ponctuelles

Les données de type géostatistique sont tout d’abord telles que la posi-
tion observée n’est pas modélisée comme aléatoire car elle est choisie par le
statisticien. Par exemple, un jeu de données météorologiques va être observé
sur une collection de stations météo, des données de pollution atmosphérique
sur une collection de lieux où l’on a implanté des appareils de mesure. Par
ailleurs, l’unité géographique associée à la donnée est ici ponctuelle : on peut
repérer la latitude et longitude des stations météo ou des appareils de me-
sure. Plus formellement, pour le champ aléatoire servant à modéliser notre
phénomène, l’espace des indices sera un domaine D de Rd contenant un
rectangle de volume strictement positif et l’indice s varie donc continument
dans cet espace. Par contre, dans la pratique, les observations du champ sont
faites en un nombre fini de points déterministes si de D. Ceux-ci peuvent
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dans certains modèles constituer une grille régulière mais ce n’est pas le cas
en général.

2.2 Données de type économétrie spatiale ou sur-
faciques

De même que pour les données de type géostatistique, pour les données
de type économétrie spatiale ou surfaciques, la position observée n’est pas
modélisée comme aléatoire. Par contre, l’unité géographique associée à la
donnée est ici de nature surfacique. Le territoire observé est partitionné en
zones sur lesquelles le phénomène est observé. C’est le cas pour la majeure
partie des données économiques qui sont mesurées sur des découpages admi-
nistratifs du territoire comme par exemple le taux de chomage ou le revenu
moyen par foyer fiscal d’une commune ou d’un département. L’indice s du
champ aléatoire varie alors dans un nombre fini de localisations qui sont
généralement les centroides des zones ou leurs représentants administratifs.

2.3 Données de type semis de points

Dans ce dernier cas, la localisation de la donnée est modélisée comme
aléatoire car elle n’est pas choisie par le statisticien mais par le phénomène.
Par exemple, supposons que l’on observe l’évolution d’une forêt et que l’on
enregistre la localisation des arbres. Nous sommes alors en présence d’un
semis de points et il y a une variable aléatoire bidimensionnelle pour chaque
observation qui est la localisation de l’arbre exprimée par ses coordonnées
dans un repère. Supposons que de plus on enregistre aussi le diamètre et le
nombre de leurs feuilles de chaque arbre. On a alors un processus ponctuel
marqué : il y a trois variables aléatoires pour chaque observation qui sont la
localisation d’une part et le diamètre et le nombre de feuilles d’autre part.
Ces deux dernières sont les marques aléatoires associées à cette localisation.
On utilise la théorie des processus ponctuels pour modéliser les répartitions
aléatoires de points. Ces points sont généralement inclus dans Rd avec d
entier ≥ 1 mais nous considérerons plus simplement le cas le plus courant où
d = 2. Les domaines classiques d’application de ces modèles sont la géologie,
l’écologie, l’étude des forêts. Donnons quelques exemples : la disposition de
certaines espèces végétales dans une forêt, les emplacements des épicentres
de secousses sismiques enregistrées, la localisation de trésors archéologiques
retrouvés sur un site, les adresses de patients affectés d’une certaine maladie
dans une région, la répartition de cellules dans un tissu biologique, . . . .
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Chapitre 3

Spécificité des données
spatiales : hétérogénéité et
autocorrélation

3.1 Considérations de modélisation

Que ce soit pour des données ponctuelles ou pour des données surfa-
ciques, nous allons utiliser une même notation pour simplifier. On parlerons
d’un champ Xs observé en des localisations s1, · · · , sn. Lorsque les données
sont ponctuelles, Xs désignera la variable aléatoire de la caractéristique au
point s et lorsque les données sont surfaciques, Xs désignera la variable
aléatoire de la caractéristique dans l’unité spatiale dont le représentant est
s. Lorsqu’on utilise un modèle mathématique de champ aléatoire pour un
phénomène observé spatialement, la loi du champ Xs est caractérisée par

– les lois marginales de Xs pour chaque localisation s
– les lois conjointes de vecteurs Xs1 , · · · , Xsn pour un ensemble fini de

localisations s1, · · · , sn
On imagine donc que, pour un lieu s donné, il existe un univers de réalisations
possibles de la caractéristiqueXs mais dans la réalité on observe généralement
une seule réalisation de Xs et ce pour un nombre fini de sites s. Par exemple
si la donnée est un ensemble de niveaux de pluie mesurés en des stations
météo à un instant donné, pour chaque station s, on dispose d’une réalisation
de la variable “volume de pluie en s”. On a une pluralité de données due à
une pluralité de lieux mais non à une pluralité de réalisations sauf si on est
dans le cas d’observations répétées. Dans ce dernier cas, il s’agit en général
d’observations répétées au cours du temps. Cette dimension temporelle bien
sûr pourrait induire la nécéssité d’utiliser un champ spatio-temporel et c’est
un domaine de recherche très actif de nos jours, mais nous avons choisi de
ne pas le développer ici. Par contre, pour un lieu donné s, si l’on est prêt à
considérer une homogénéité temporelle du phénomène ainsi qu’une absence
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de dépendance temporelle, on peut considérer que l’on dispose de plusieurs
observations i.i.d. d’une même variable aléatoire Xs. Le fait que l’on dispose
le plus souvent que d’une seule observation (coupe transversale) pourrait
décourager le statisticien débutant de faire la moindre inférence. La solution
est de puiser des forces dans la continuité spatiale du phénomène et dans la
corrélation entre lieux voisins pour rendre cette inférence possible.
On suppose que le champ Xs admet un moment d’ordre un fini : E(Xs) <∞.
On décompose alors le champ aléatoire en deux parties de la façon suivante

Xs = E(Xs) + (Xs − E(Xs))

Le terme déterministe E(Xs) s’appelle la tendance et modélise les varia-
tions à grande échelle du phénomène décrit par ce champ. Il représente la
valeur moyenne du champ (valeur théorique que l’on pourrait estimer par
exemple si l’on disposait de plusieurs réalisations temporelles de Xs). Le
terme aléatoire (Xs − E(Xs)) s’appelle la fluctuation et modélise les varia-
tions du champ à petite échelle. Notons que la fluctuation a une moyenne
nulle par construction. Une décomposition similaire existe en séries tem-
porelles. Dans la pratique cependant, cette décomposition en deux termes
pour un phénomène observé n’est bien sûr pas unique, et c’est le choix du
modélisateur d’affecter certains aspects à la partie aléatoire ou à la par-
tie déterministe. Une coupe transversale ne permet pas de différencier, en
présence d’un agrégat de résidus élevés, entre une hétérogénéité avec une
forte tendance dans le voisinage de l’agrégat, et une autocorrélation spatiale
positive. Pour comprendre ce découpage, il est bon de penser à une mon-
tagne : le détail de la variation de l’élévation mesuré avec précision constitue
le champ ; on peut penser à l’allure de la montagne vue d’avion telle qu’elle se
découpe sur l’horizon comme à une tendance ; la différence entre l’élévation
précise et cette tendance représente alors les accidents de terrain visibles de
près.
Dans le cas des modèles de régression où il y aura à la fois une variable
dépendante Ys et des variables explicatives Xs, nous raisonnerons condi-
tionnellement à l’observation des variables explicatives.

3.2 Hétérogénéité spatiale

L’hétérogénéité des données spatiales se traduit par le fait que la répartition
marginale du champ aléatoire Xs varie avec la localisation s. On dit qu’il
y a une tendance lorsque E(Xs) est non constante dans l’espace : on dit
aussi que la moyenne est non stationnaire. Si l’on mesure par exemple la
quantité de précipitations sur des stations météo, il parait naturel de penser
que le nombre moyen de centimètres cubes de pluie par semaine à Tou-
louse est différent de celui observé à Brest. Il s’agit là d’une différence sur
la moyenne, mais on peut aussi imaginer qu’il y a une plus forte variabilité
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Figure 3.1 – Tendance et Fluctuation.

d’une semaine à l’autre à Brest qu’à Toulouse ou que les valeurs extrêmes
sont très différentes. L’ensemble de la distribution des centimètres cubes de
pluie par semaine a des raisons d’être spécifique du lieu.
L’hétérogénéité spatiale sera prise en compte par l’usage de variables ex-
plicatives pour modéliser la tendance. Certaines de ces variables peuvent
être spatiales de nature comme, par exemple, la distance à certains lieux
d’intérêt pour le problème. Mais notons cependant qu’il n’est pas suffisant
de prendre en compte ces variables dans la moyenne pour évacuer totalement
la structure spatiale du problème qui peut rester présente à l’ordre deux.

3.3 Autocorrélation spatiale

Une citation célèbre de Tobler (1979) est Everything is related to every-
thing else but closer things more so.
Si la tendance est spécifique au moment d’ordre un d’un champ, l’auto-
corrélation concerne le moment d’ordre deux que l’on supposera exister dans
ce paragraphe : on dit alors que le champ est du second ordre.
Pour les données spatiales, une corrélation peut se produire entre Xs et
Xt du fait de leur proximité géographique. De façon qualitative, on parle
d’autocorrélation spatiale positive pour une variable lorsqu’il y a regroupe-
ment géographique de valeurs similaires de la variable. De même, on parle
d’autocorrélation spatiale négative pour une variable lorsqu’il y a regroupe-
ment géographique de valeurs dissemblables de la variable. Enfin, on parle
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Figure 3.2 – Types d’autocorrélation.

d’absence d’autocorrélation pour une variable lorsqu’il n’y a pas de relation
entre la proximité géographique et le degré de ressemblance des valeurs de la
variable. Prenons pour illustrer cette notion l’exemple d’un champ dichoto-
mique à valeurs 0 ou 1 représentées respectivement par les couleurs blanche
et noire et constant sur les carrés d’une grille régulière. Comme on le voit
sur la Figure 3.2, si le champ ne présente pas d’autocorrélation (à droite),
une représentation graphique du champ montre des carrés blancs et noirs
répartis au hasard. Si le champ présente une autocorrélation spatiale posi-
tive (à gauche), on verra des amas de carrés blancs et des amas de carrés
noirs. Si le champ présente une autocorrélation spatiale négative (au centre),
les carrés blancs auront souvent des voisins noirs et inversement.
Cette notion présentée ci-dessus de manière intuitive va se traduire par des
propriétés du champ aléatoire portant sur l’ordre 2, c’est à dire sur la struc-
ture de covariance. La structure de covariance d’un champ du second ordre
est définie par la fonction d’autocovariance

R(s, t) = Cov(Xs, Xt).

Pour modéliser un tel champ, une des hypothèses simplificatrices que l’on est
souvent amené à faire sur sa structure de covariance est celle de la station-
narité. La stationnarité stricte ou forte d’un champ suppose que la loi du
vecteur Xs1 , . . . , Xsk est invariante par translation quel que soit le nombre
de points k et quelles que soient leurs positions s1, . . . sk i.e. Xs1 , . . . , Xsk a
même loi que Xs1+h, . . . , Xsk+h quel que soit h ∈ Rd.
Une notion plus faible porte sur les deux premiers moments du champ. Un
champ aléatoire Xs à valeurs réelles du second ordre est dit stationnaire
au second ordre ou au sens faible s’il existe un vecteur µ ∈ R et une
fonction R : Rd 7→ R dite fonction d’autocovariance tels que

E(Xs) = µ (3.1)

Cov(Xs, Xs+h) = R(h) (3.2)

Notons que, dans ce cas, la fonction d’autocovariance est une fonction d’une
variable au lieu de deux. Il est clair que la stationnarité forte implique la
stationnarité faible. Dans le cas gaussien, ces deux notions sont équivalentes
puisque les moments d’ordre un et deux déterminent la distribution. Par la
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suite le terme de stationnarité (sans précision) sera synonyme de stationna-
rité faible.
Les fonctions d’autocovariance peuvent être caractérisées par la propriété
mathématique suivante. Une fonction R(s, t) de R2 à valeurs dans R est une
fonction d’autocovariance d’un champ aléatoire réel du second ordre si et
seulement si elle est de type positif c’est à dire que quels que soit l’entier k,
quels que soient les k sites s1, . . . , sk et les réels a1, . . . , ak, on a

k∑
i=1

k∑
j=1

aiajR(si, sj) ≥ 0.

Une fonction R(s) de R à valeurs dans R est une fonction d’autocovariance
d’un champ aléatoire réel stationnaire du second ordre si et seulement si
elle est de type positif ce qui signifie dans ce cas que la fonction de deux
variables (s, t) 7→ R(s− t) est de type positif. Notons que le vocabulaire “de
type positif” est le même mais qu’il s’applique dans un cas à une fonction
de deux variables et dans l’autre à une fonction d’une variable.

3.4 Notion d’homogénéité et d’interaction spatiale
pour les semis de points

Dans le cas des semis de points, sans aborder les notions mathématiques
précises, que nous verrons après avoir introduit le modèle, essayons de définir
les notions d’homogénéité et d’interaction pour un processus non marqué.
La notion d’homogénéité est une notion d’ordre un : il s’agit de savoir si
le nombre moyen de points par unité de surface est constant au travers du
domaine. L’outil nécéssaire à son étude est l’intensité du processus.
La notion d’interaction est une notion d’ordre deux : il s’agit de savoir si
le nombre (aléatoire) de points N(A) dans une partie de l’espace A est
dépendant ou indépendant (de façon probabiliste) du nombre de points
N(B) dans une autre partie B disjointe de A. Les phénomènes qui présentent
de l’attraction ou de la répulsion entre les points comportent une dépendance
entre N(A) et N(B). Par exemple, les positions d’animaux sur un territoire
présentent de la répulsion en raison de la compétition pour la nourriture. Les
positions de personnes atteintes d’une maladie épidémique vont au contraire
montrer de l’attraction en raison de la contagion.
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Chapitre 4

Outils statistiques pour
données spatiales

Nous introduisons dans ce chapitre les outils spécifiques nécéssaires à
l’étude des données spatiales. Le variogramme introduit dans le premier
paragraphe est plutôt un outil de géostatistique pour la modélisation de la
structure de covariance alors que les matrices voisinage et indices de Moran
sont des outils pour les données de type surfacique. Le package “spdep” de
R par R. Bivand permet de mettre en oeuvre les outils qui sont orientés vers
les données surfaciques. Pour les données ponctuelles, on utilisera plutôt les
packages “gstat”, “geoR” et “geoRglm”. Enfin le package “SpatStat” permet
de modéliser les semis de points.

4.1 Variogramme pour variable ponctuelle conti-
nue

4.1.1 Variogramme théorique

La stationnarité est souvent une hypothèse trop forte dans les appli-
cations et une façon de l’affaiblir est de considérer la stationnarité in-
trinsèque. On n’exige pas l’existence d’un moment d’ordre un pour le
champ lui-même mais seulement pour les accroissements du champ et l’on
demande que

E(Xs+h −Xs) = 0 (4.1)

Var(Xs+h −Xs) = 2γ(h) = E(Xs+h −Xs)
2 (4.2)

La fonction γ s’appelle alors le semi-variogramme et 2γ le variogramme.
Dans le cas où le champ est stationnaire (donc nécessairement intrinsèquement
stationnaire), il existe la relation suivante entre variogramme et fonction
d’autocovariance
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Var(Xs+h −Xs) = Var(Xs+h) + Var(Xs)− 2Cov(Xs, Xs+h)

= 2σ2 − 2R(h)

= 2γ(h)

Le variogramme est donc un outil de description de la structure de cova-
riance : on peut le définir pour une série temporelle mais il est peu utilisé
dans ce contexte. Nous allons décrire à présent plusieurs aspects importants
d’un variogramme, comme son comportement au voisinage de l’origine et à
l’infini qui nous renseignent sur les propriétés du champ.
Remarquons d’abord que γ(0) = 0. On dit qu’un champ est continu en
moyenne quadratique si

lim
h−→0

γ(h) = 0.

Cette condition équivaut à la continuité de la fonction d’autocovariance dans
le cas stationnaire (dans le cas non stationnaire, cela équivaut à la continuité
de la fonction de deux variables R(s, t) = Cov(Xs, Xs+h) sur la diagonale).
Si par contre

lim
h−→0

γ(h) = c0 6= 0

alors c0 est appellé effet de pépite (“nugget effect” en anglais) et témoigne
d’un champ plus irrégulier. Les Figures 4.1 et 4.2 illustrent ces deux types
de comportement pour un modèle de variogramme dit exponentiel défini par

γ0(h) = exp(−1.5 ‖ h ‖). (4.3)

Le graphique de gauche représente le variogramme et celui de droite montre
une réalisation d’un champ gaussien stationnaire centré de variogramme
donné par (4.3).
Lorsque le variogramme est borné, on appelle seuil (“sill” en anglais) la
valeur de son asymptote et portée (“range” en anglais) dans la direction
r la plus petite valeur de ‖r‖ telle que γ(r(1 + ε)) = R(0) quel que soit
ε > 0. La Figure 4.3 montre graphiquement ces deux paramètres dans le cas
d’un variogramme sphérique (les divers modèles de variogrammes classiques
seront définis dans le paragraphe 4.1.2) : la portée vaut 10 et le seuil vaut 1.
Un champ intrinsèquement stationnaire est isotrope si son variogramme
γ(h) ne dépend que de la norme du vecteur h et non de sa direction. Dans
ce cas la fonction

‖h‖ 7−→ E(Xs+h −Xs)
2 = γ0(‖ h ‖)

est appellée variogramme omnidirectionnel isotrope. On parle d’anisotropie
lorsque l’hypothèse d’isotropie n’est pas vérifiée. On peut alors représenter
une fonction variogramme univariée pour chaque direction appellée vario-
gramme directionnel. Si les lignes de niveau du variogramme sont des
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Figure 4.1 – Champ sans effet de pépite.
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Figure 4.2 – Champ avec effet de pépite.
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Figure 4.3 – Portée et Seuil d’un variogramme.
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ellipses, on dit qu’il y a anisotropie géométrique. On peut alors se ramener
à une configuration d’isotropie par une rotation composée par une affinité
(A). Alors γ(h) = γ0(‖ Ah ‖).
Notons que, de façon similaire aux fonctions d’autocovariance, les fonctions
variogrammes sont caractérisées par la propriété mathématique suivante.
Une fonction γ(t) de R à valeurs dans R est le variogramme d’un champ
aléatoire réel intrinsèquement stationnaire si et seulement si elle est condi-
tionnellement défini négative d’ordre un c’est à dire que quels que soit l’entier
k, quels que soient les k sites s1, . . . , sk et les réels a1, . . . , ak, on a

k∑
i=1

k∑
j=1

aiajγ(si, sj) ≥ 0,

dès que les réels a1, . . . , ak satisfont la condition
∑k

i=1 ai = 0. On dit qu’il
s’agit d’une variogramme valide.

4.1.2 Estimation d’un variogramme

On appelle variogramme empirique un estimateur du variogramme introduit
par Matheron (1962)

2γ̂(h) =
1

#N(h)

∑
(i,j)∈N(h)

(Xsi −Xsj )
2,

où h ∈ R2, N(h) = {(i, j) : si − sj = h} et #A désigne le cardinal de
l’ensemble A.
Dans le cas isotrope, on a γ(h) = γ0(‖ h ‖) et l’on appelle alors la fonction
γ0 le variogramme omnidirectionnel.
En pratique :

– il faut introduire une tolérance en distance εh et une tolérance angu-
laire εθ sinon les ensembles N(h) sont souvent vides pour un “design”
(disposition de points) irrégulier : (i, j) ∈ N(h) si la valeur absolue
de la différence entre ‖ si − sj ‖ et ‖ h ‖ est inférieure à εh et si la
valeur absolue de la différence entre l’angle de si− sj et celui de h est
inférieure à εθ.

– cet estimateur n’est fiable que pour les h inférieurs au demi-diamètre
de la région et tels que N(h) contienne au moins 30 paires.

– le variogramme empirique n’est pas conditionnellement défini négatif.
– le variogramme empirique n’est pas robuste : en effet, pour un champ

gaussien, la variable
(Xs+h−Xs)2

2γ(h) a une loi de χ2 à un degré de liberté
et donc une forte asymétrie. En réduisant cette asymétrie, Cressie et
Hawkins (1980) proposent une transformation en racine carrée de cette
variable qui rend l’estimateur moins sensible aux points aberrants.
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Finalement, un retour à l’échelle d’origine et une correction de biais
les conduit à l’estimateur suivant :

2γ̃(h) =
{ 1

#N(h)

∑
(i,j)∈N(h)(Xsi −Xsj )

1/2}4

0.457 + 0.494
#N(h)

Nous avons mentionné que le variogramme empirique n’est pas un vario-
gramme valide. Hors il est nécessaire d’avoir un estimateur conditionnelle-
ment défini négatif du variogramme pour que les variances de prédiction
estimées soient positives. Pour cela, on ajuste au variogramme empirique un
modèle théorique.
Après avoir choisi une famille paramétrique de variogrammes valides γ(.; θ),
où θ ∈ Θ est un vecteur de paramètres, on ajuste les valeurs du variogramme
empirique γ̂(hk) à cette famille par moindre carrés ordinaires :

min
θ∈Θ

K∑
k=1

(γ̂(hk)− γ(hk; θ))
2.

Si l’on veut tenir compte de la variabilité des γ̂(hk) ou même de leur structure
de covariance, on peut aussi utiliser des moindres carrés pondérés ou même
généralisés. En pratique, le choix de la famille se fait souvent en examinant
visuellement la forme de la courbe empirique.
Les modèles fréquemment utilisés pour un variogramme isotropes sont

– le modèle exponentiel

γ(h) = σ2(1− exp(−h
λ

)),

– le modèle sphérique

γ(h) = σ2(
3h

2α
− h3

2α3
),

– le modèle gaussien

γ(h) = σ2(1− exp(−h
2

λ2
)),

– le modèle de Matern

γ(h) = σ2(1− 1

2s−1
Γ(s))

h

λ

s

Ks(
h

λ
).

4.2 Matrices de voisinage pour variables surfaciques

La matrice de voisinage est la version spatiale de l’opérateur retard en
séries temporelles. Notons que le vocabulaire peut varier selon les auteurs et
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on lui donne aussi parfois le nom de matrice de poids. Dans certains cas, elle
se nomme matrice de contiguité (ce qui est en fait un cas particulier décrit
plus loin). Elle constitue un outil de modélisation et non un paramètre du
champ. Pour n sites géographiques, une matrice de poids W est de taille
n × n et son élément wij indique l’intensité de la proximité de la zone i
par rapport à la zone j (elle spécifie la topologie du domaine mais attention
la proximité peut aussi avoir un sens autre que géographique comme on le
verra plus loin). On impose en général que la diagonale soit nulle wii = 0.
Une matrice de voisinage W n’est pas nécéssairement symétrique. On peut
symétriser une matrice W en la remplaçant par (W +W ′)/2.
Une matrice de poids est dite normalisée lorsqu’on impose la contrainte∑n

j=1wij = 1. Cette contrainte permet de rendre les paramètres spatiaux
comparables entre divers modèles comme on le verra par la suite. On peut
normaliser une matrice en divisant chaque ligne par sa somme.
Il faut faire attention au fait suivant : si on normalise une matrice symétrique,
elle perd en général sa symétrie. De même si on symétrise une matrice nor-
malisée, elle perd en général la normalisation. Seules les matrices double-
ment stochastiques peuvent être à la fois normalisées et symétriques. Une
propriété plus faible que la symétrie qui est celle d’être semblable à une
matrice symétrique va jouer un rôle plus tard. Si on normalise une matrice
symétrique, elle reste semblable à une matrice symétrique.
On distingue plusieurs sortes de matrices de voisinage. Pour définir ces ma-
trices, nous allons prendre un exemple : le tableau ci-dessous représente la
position respective de neuf sites.

1 2 3

4 0 5

6 7 8

4.2.1 Matrices de contiguité

Une matrice de contiguité ne contient que des 0 et des 1. Dans le cas d’une
grille régulière, on distingue les cas suivants, nommés d’après le vocabulaire
des échecs :

- la matrice “rook”‘consiste à poser wij = 1 si les sites i et j ont au
moins une frontière commune ; dans notre exemple, 0 est voisin de 2, 7, 4,
5.
Ecrivons cette matrice et sa version normalisée
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Wrook =



0 0 1 0 1 1 0 1 0
0 0 1 0 1 0 0 0 0
1 1 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0
1 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 1 0


W ∗rook =



0 0 1
4 0 1

4
1
4 0 1

4 0
0 0 1

2 0 1
2 0 0 0 0

1
3

1
3 0 1

3 0 0 0 0 0
0 0 1

2 0 0 1
2 0 0 0

1
3

1
3 0 0 0 0 1

3 0 0
1
3 0 0 1

3 0 0 0 0 1
3

0 0 0 0 1
2 0 0 1

2 0
1
3 0 0 0 0 0 1

3 0 1
3

0 0 0 0 0 1
2 0 1

2 0


- la matrice “bishop” consiste à poser wij = 1 si les sites i et j ont au moins
un sommet commun ; dans notre exemple, 0 est voisin de 1, 3, 6, 8.

- la matrice “queen” consiste à poser wij = 1 si les sites i et j ont au
moins une frontière ou un angle commun ; dans notre exemple, 0 est voisin
de 1, 2 , 3, 4 , 5, 6, 7, 8.
Dans le cas de positions irrégulières, deux zones sont contigues si elles ont
une frontière en commun. Ces matrices sont automatiquement symétriques.

4.2.2 Matrices basées sur la distance entre centröıdes

Notons I(A) la fonction indicatrice de l’évènement A et d(si, sj) une mesure
de distance entre les sites si et sj . Cette distance peut désigner tout sim-
plement la distance euclidienne (distance géographique à vol d’oiseau) mais
peut être aussi un temps de trajet entre les deux sites, ou encore de la forme
d(si, sj) =| xi−xj |, où xi désigne une caractéristique socio-économique per-
tinente. Voici quelques façons couramment utilisées pour définir une matrice
de voisinage à partie d’une distance :

- wij = I(d(si, sj) ≤ S), où S est un seuil fixé.
- wij = C

d(si,sj)α
, où C et α sont des constantes fixées.

- wij = exp(−αd(si, sj)), où α est une constante fixée.
Notons que ces matrices sont automatiquement symétriques.

4.2.3 Matrices basées sur les plus proches voisins

Etant donné une notion de distance et un entier k, pour chaque site si, on
ordonne les autres sites en fonction de leur distance à si et l’on détermine
ainsi les k plus proches voisins de si. La matrice contient alors sur la ligne
i des 1 pour les positions des k plus proches voisins et des 0 sinon. Ces
matrices ne sont en général pas symétriques.

4.2.4 Matrices basées sur triangulation de Delaunay

On appelle triangulation de Delaunay l’unique triangulation telle que
le cercle circonscrit à trois sommets quelconques ne contienne aucun autre
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sommet. Cette triangulation permet de construire une matrice de la façon
suivante : deux sites sont voisins si le segment les joignant est une arête de la
triangulation. Ces matrices présentent cependant des liaisons pour les sites
en bordure avec des voisins très éloignés.
Notons qu’on peut combiner le principe des plus proches voisins (ou de la
contiguité) et celui de la distance en une même matrice. Ceci permet de
combiner les avantages des deux approches dans le cas de positions très
hétérogènes des centroides de zones dans l’espace.

4.2.5 Variable spatialement décalée

Si X désigne le vecteur colonne des valeurs Xsi du champ aux points
d’observation, on appelle variable spatialement décalée associée à X
la variable WX. Si W est normalisée, l’élément i du vecteur (WX) est une
moyenne pondérée des valeurs du champ dans les zones voisines de la position
i. Dans le cas d’une variable de comptage, il peut être plus intéressant de ne
pas normaliser la matrice de voisinage binaire de façon que (WX) représente
la somme (et non la moyenne) des valeurs voisines.
Notons que si la matrice W est normalisée et si le vecteur X est centré, le
vecteur spatialement décalé WX est également centré.

4.3 Indice de Moran pour variable surfacique conti-
nue

Pour une matrice de voisinage W vérifiant wii = 0 et une variable Xsi =
Xi, i = 1, . . . n, l’indice de Moran est défini par :

I =

∑
i,j wij(Xi−X̄)(Xj−X̄)∑

i,j wij∑
i(Xi−X̄)2

n

C’est le rapport d’une sorte de covariance entre unités contigües à la va-
riance du champ : il est donc comparable à un coefficient d’autocorrélation.
Cet indice est indépendant des unités dans lesquelles X est exprimé. Si l’on
symétrise la matrice W , (i.e. W −→ (W +W ′)/2), I est inchangé.
SiX est une variable centrée, les valeurs deX de même signe et géographiquement
proches contribuent positivement à I. Les valeurs positives et fortes de I in-
diquent une autocorrélation spatiale positive, les valeurs négatives et fortes
de I une autocorrélation spatiale négative et les valeurs proches de 0 une
absence d’autocorrélation.
Attention : le I de Moran dépend du choix de la matrice W , et peut être
affecté par le niveau d’agrégation (effet d’échelle) ainsi que par la forme des
unités spatiales.
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Il n’est pas possible d’interpréter un indice de Moran brut et nous verrons
plus loin comment le normaliser et l’utiliser pour un test d’autocorrélation.
De façon purement descriptive, nous pouvons cependant faire un diagramme
de Moran et en tirer des conclusions qualitatives sur l’autocorrélation. Pour
une matrice de voisinage W , le diagramme de Moran d’un champ Xs consiste
en un diagramme de dispersion de la variable X contre la variable spatiale-
ment décalée WX. On montre alors que la pente de la droite de régression
linéaire simple de WX contre X est égale à l’indice de Moran. Grace au
signe de la pente, on lit sur le graphique la tendance générale de l’auto-
corrélation, une pente positive correspondant à une autocorrélation positive
et inversement.
Notons qu’il existe d’autres indices similaires comme celui de Geary et de
Getis. Le coefficient C de Geary est défini par :

C =
n− 1

2
∑

i,j wij

∑
i,j wij(Xsi −Xsj )

2∑
i(Xsi − X̄)2

Cet indice ressemble à la statistique de Durbin Watson en séries temporelles.
Les valeurs faibles de C indiquent une autocorrélation spatiale positive et
les valeurs fortes de C une autocorrélation spatiale négative. Cet indice est
indépendant des unités dans lesquelles le champ X est exprimé.
Pour comparaison, on rappelle que la statistique de Durbin-Watson pour
une série temporelle centrée est donnée par

DW =

∑n
t=2(Xt −Xt−1)2∑n

t=1X
2
t

.

Il existe une version locale de l’ indice de Moran qui mesure une version
locale de la notion d’autocorrélation. L’indice de Moran local associé au
site i se calcule simplement par

Ii =

n∑
j=1

wij(Xi − X̄)(Xj − X̄) = (Xi − X̄)

n∑
j=1

wij(Xj − X̄).

La somme des indices de Moran locaux redonne l’indice de Moran si bien
que Ii peut être considéré comme la contribution du point i à l’indice global.
Il constitue une mesure d’influence du point i sur l’autocorrélation globale.

4.4 Statistique “join counts” pour variable surfa-
cique qualitative

Ces statistiques sont souvent introduites dans le cas dichotomique. Si Xi

a deux modalités 0 et 1 avec : P (Xi = 1) = p, on introduit les statistiques
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suivantes appelées “join counts”

BB =
1

2

∑
i,j

wijXiXj

BW =
1

2

∑
i,j

wij(Xi −Xj)
2

Il est facile de comprendre par exemple que si W est une matrice binaire, la
statistique BB compte le nombre de couples de sites voisins pour lesquels
X = 1. Donc si BB prend une grande valeur, cela va plaider pour une auto-
corrélation spatiale positive. Inversement, BW compte le nombre de couples
de sites avec une valeur différente de X. Nous verrons plus loin comment
utiliser ces statistiques pour évaluer l’autocorrélation spatiale d’une variable
surfacique binaire.

4.5 Processus ponctuels

La théorie des processus ponctuels est un cadre mathématique adapté à
la modélisation de répartitions aléatoires de points. Le package “spatstat”
de R (A. Badeley et R. Turner) permet la modélisation et la simulation de
tels processus. Citons également les packages “splancs” et “VR” de R. Nous
allons brièvement évoquer la définition mathématique d’un tel processus.
Etant donné un sous-ensemble E de R2, un processus ponctuel X est une
variable aléatoire à valeurs dans l’espace Nlf des sous-ensembles x locale-
ment finis de E, c’est à dire tels que le nombre de points de x contenus
dans tout borné de E est fini. Ces sous-ensembles ou “configurations” sont
considérés comme des suites non ordonnées de points et notés {x1, · · · , xn}.
Il faut bien sûr munir Nlf d’une tribu N pour définir proprement le pro-
cessus mais nous ne rentrerons pas dans ces détails. Pour un borélien B de
R2, on notera N(B) le nombre de points d’une configuration appartenant
à B : pour tout B, N(B) est une variable aléatoire. La loi d’un processus
ponctuel est définie par les probabilités P(X ∈ Y ), pour tout Y ∈ N : cette
famille contient en particulier la famille des probabilités fini-dimensionnelles
P(N(B1) = n1, . . . , N(Bk) = nk). Il est à noter qu’un processus ponctuel
est caractérisé de manière unique par la famille des probabilités d’évitement
P(N(B) = 0), lorsque B parcourt les boréliens.
Nous adopterons ici une approche plus commode pour les applications consis-
tant à définir une densité jointe f

(
(x1, · · · , xn), n

)
pour les variables N,

nombre de points, et X1, . . . , Xn, localisations des N points (Cressie, 1993,
p.622). On a alors

∞∑
n=0

∫
En
f
(
(s1, · · · , sn), n

)
ds1 · · · dsn = 1.

34



On dit qu’un processus ponctuel est stationnaire lorsque sa loi (et par
conséquent toutes ses caractéristiques) est invariante par translation. On
dit qu’il est isotrope lorsque toutes ses caractéristiques sont invariantes
par rotation. Basée sur l’observation d’une seule réalisation sur une fenêtre
bornée, l’étude statistique d’un processus ponctuel porte sur l’estimation
de ses caractéristiques, le diagnostic d’homogénéité, d’interaction et enfin la
modélisation en fonction de caractéristiques explicatives.

4.5.1 Un exemple : le processus de Poisson homogène

Le processus de Poisson homogène est le modèle de base en théorie des
processus ponctuels car il formalise le concept de points répartis au hasard.
Il est défini par les deux conditions suivantes pour un domaine Ω de R2 :

1. il existe un réel λ > 0 tel que pour tout borélien A de R2, N(A) suit
une loi de Poisson de moyenne λ | A |, où | A | désigne l’aire de A.

2. sachant que N(A) = n, les n points du processus qui sont dans A
forment un échantillon de la loi uniforme sur A.

Ces deux conditions impliquent la condition (3) suivante : pour deux boréliens
A et B, les variables aléatoires N(A) et N(B) sont indépendantes. Le pro-
cessus de Poisson homogène est stationnaire et isotrope.
On démontre que les probabilités fini-dimensionnelles de ce processus sont
données par

P(N(B1) = n1, . . . , N(Bk) = nk) =
λn1+...+nk | B1 |n1 · · · | Bk |nk

n1! . . . nk!
exp(−

k∑
i=1

λ | Bk |).

Conditionnellement au nombre total de points N = N(Ω), les positions sont
indépendantes et identiquement distribuées selon une loi uniforme sur Ω.
Mais il ne faut pas confondre ce modèle avec celui de points uniformément
répartis sur Ω pour lequel le nombre de points n’est pas aléatoire (ce pro-
cessus porte le nom de processus ponctuel binomial car le nombre de points
contenus dans un borélien A de Ω suit alors une loi binomiale).

4.5.2 Le processus de Poisson inhomogène

Le processus de Poisson homogène ayant une intensité constante ne peut
servir à modéliser des phénomènes présentant une forte hétérogénéité spa-
tiale. Etant donné une mesure d’intensité Λ, on peut définir le processus de
Poisson X de mesure d’intensité Λ par les deux conditions suivantes

– (i) le nombre de points N(A) de X dans tout borélien A de R2, suit
une loi de Poisson de moyenne Λ(A),

– (ii) les nombres de points de X dans k boréliens A1, . . . , Ak disjoints
de R2 sont k variables aléatoires indépendantes.

35



Ainsi défini, ce processus n’est pas stationnaire sauf si l’intensité est constante.
Conditionnellement à N = n, les n points X1, . . . , Xn sont alors i.i.d..
Lorsque la mesure d’intensité est absolument continue par rapport à la me-
sure de Lebesgue (Λ(A) =

∫
A λ(x)dx), il existe une relation directe entre

l’intensité du processus ponctuel λ(.) et la densité d-dimensionnelle f(.) de
toute localisation Xi conditionnellement à N :

∀s ∈ E, f(s) =
λ(s)∫

E λ(s)ν(ds)
.

4.5.3 Caractéristique d’ordre un : l’intensité

L’intensité est l’analogue pour le processus ponctuel de l’espérance pour
une variable aléatoire. On commence par définir la mesure d’intensité comme
une mesure sur les boréliens B de R2 vérifiant

Λ(B) = E(N(B)),

de façon que Λ(B) représente le nombre moyen de points du processus dans
B. Si le processus est stationnaire, cette mesure est proportionnelle à la
mesure de Lebesgue et le facteur de proportionalité, λ, appellé intensité,
représente le nombre moyen de points du processus par unité de surface.
Plus généralement, si Λ est absolument continue par rapport à la mesure de
Lebesgue, il existe une fonction λ localement intégrable définie sur E telle
que pour tout borélien B,

Λ(B) =

∫
B
λ(x)dx.

Cette fonction λ porte le nom de fonction d’intensité du processus ponctuel.
Comme on l’a vu ci dessus, si le processus est stationnaire, la fonction d’
intensité est constante. Inversement, si le fonction d’intensité est constante,
le processus est dit stationnaire au premier ordre ou homogène (sinon, il est
dit inhomogène). Dans le cas du processus de Poisson homogène, la fonction
d’intensité est constante égale au paramètre λ de la définition du paragraphe
4.5.1.

4.5.4 Estimation de l’intensité

Dans le cas d’un processus homogène d’intensité λ, un estimateur sans
biais de l’intensité est donné par λ̂ = N

|W | , où W est la fenêtre d’observation

et N = N(W ) le nombre de points observés dans cette fenêtre. Il coincide
en fait avec l’estimateur du maximum de vraisemblance dans le cas où le
processus est un Poisson homogène.
Dans le cas inhomogène, on peut utiliser un estimateur non paramétrique,
introduit par Diggle (1985) donné par
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Figure 4.4 – Processus régulier (à gauche) et agrégé (à droite)

λ̂h(s) =

∑N
i=1 h

−dK
(
s−Xi
h

)∫
E h
−dK

(
s−u
h

)
du

(4.4)

où le dénominateur est un terme de correction au bord nécessaire lorsque
le domaine d’observation est limité et où K est une fonction noyau. Cet
estimateur est, de même qu’un estimateur non paramétrique de densité, peu
sensible au choix du noyau K. Le choix de la largeur de bande ou fenêtre h
permettant de minimiser l’erreur quadratique moyenne intégrée

EQMI(h) = E
{∫

E

(
λ̂h(s)− λ(s)

)2
ds
}

se fait selon des méthodes similaires au cas de l’estimation de densité.

4.5.5 Caractéristiques d’ordre deux : Fonctions F, G, J, K

Du fait de la propriété (ii) (voir paragraphe 4.5.2), le processus de Poisson
implique une absence d’interaction entre les évènements. Les caractéristiques
du second ordre vont permettre de mettre en évidence deux autres types
de comportement. On distingue d’une part les processus pour lesquels les
évènements ont tendance à s’attirer (agrégation) et ceux pour lesquels les
évènements ont tendance à se repousser (régularité). On voit la différence
entre ces deux comportements sur la figure suivante.
Nous allons d’abord introduire un certain nombre de fonctions associées à
un processus ponctuel basées sur les distances entre points.
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Distance d’un point courant au plus proche voisin

Soit x un point de E qui ne figure pas nécéssairement dans une configu-
ration du PP X. Pour un processus ponctuel X homogène, on définit

Fx(r) = P(d(x, {x1, · · · , xn} \ {x}) ≤ r).

Notons qu’en raison de l’homogénéité Fx ne dépends pas de x, c’est pourquoi
nous le noterons plus simplement F . F est la fonction de répartition de la
distance au plus proche voisin et peut aussi s’interpréter comme la mesure
de “l’espace vide” (c’est pourquoi on l’appelle ”empty space function” en
anglais) dans le sens suivant : 1 − F (r) est la probabilité qu’une boule de
centre 0 (ou un quelconque point de E fixé) ne contienne aucun point de X.
Pour estimer F , on utilise en général une grille fine de points définie sur E
qui permet d’approximer les distances au plus proche voisin.
Sous l’hypothèse CSR d’homogénéité spatiale sur R2, la fonction F a la
forme analytique suivante pour x > 0

F (x) = 1− exp(−πλx2).

On en déduit la méthode suivante pour évaluer qualitativement l’hypothèse
CSR par des simulations. On simule M réalisations d’un processus de Pois-
son homogène dans E et on calcule la fonction F̂k(r) pour chaque simulation
k. On détermine ensuite l’enveloppe supérieure FU et inférieure FL par

FU (r) =
M

max
k=1

F̂k(r), FL(r) =
M

min
k=1

F̂k(r).

Si la fonction F̂ (r) de notre réalisation se trouve dans l’enveloppe, on en
déduit que le modèle de Poisson homogène est compatible avec les données.
Pour le jeu de données cells (positions de cellules) de spatstat, on voit que
la fonction F̂ en noir sur la figure 4.5.5 sort de l’enveloppe (en pointillés).

Distance d’un point du PP au plus proche voisin

Si cette fois, on s’intéresse à la distance entre un point du PP et son plus
proche voisin, on définit la fonction de répartition de ces distances G par

G(r) = P(d(x, {x1, · · · , xn} \ {x}) ≤ r | x ∈ X).

Un estimateur classique de G est donné par la fonction de répartition em-
pirique définie par

Ĝ(r) =
1

N

N∑
i=1

1(d(xi, xj(i)) ≤ r),

38



cells

●

●

●
●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

0.00 0.02 0.04 0.06 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

envelope(cells, Fest)

r 
F

(r
)

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

envelope(cells, Gest)

r 

G
(r

)

0.00 0.02 0.04 0.06 0.08

2
4

6
8

cells data

r 

J(
r)

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

redwood data

r 

J(
r)

Figure 4.5 – Processus régulier à gauche et agrégé à droite

où xj(i) est le point de X le plus proche de xi. Le même principe d’enveloppes
peut être appliqué et l’on voit que sur les données cells, l’estimateur de la
fonction G sort également de l’enveloppe sous l’hypothèse CSR.
A partir de F et G, on peut définir la fonction J par

J(r) =
1−G(r)

1− F (r)
.

J = 1 correspond au cas d’un processus poissonnien. J > 1 indique une
tendance à la régularité et J < 1 à l’agrégation. La figure 4.5 montre la
différence de comportement de J entre les données cells et les données red-
wood.
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Fonction de corrélation des paires, fonction K de Ripley

De même que l’on a introduit la mesure d’intensité pour le moment
d’ordre 1, le rôle du moment d’ordre 2 est joué par la mesure de moment
factoriel d’ordre 2, donnée pour tous boréliens B1 et B2 de R2 par

α2(B1 ×B2) = E(N(B1)N(B2))− Λ(B1 ∩B2).

Lorsque cette mesure est absolument continue par rapport à la mesure de
Lebesgue, on note ρ2 sa densité, appellée densité d’intensité d’ordre 2. Pour
un PP stationnaire, la fonction ρ2(x, y) ne dépends que de x− y. Si de plus
le PP est isotrope, elle ne dépends que de ‖ x− y ‖.
A partir de ρ2, on définit la fonction de corrélation des paires g par

g(x, y) =
ρ2(x, y)

λ(x)λ(y)
.

C’est cette fonction qui conduit à une autre méthode de comparaison avec
un PP de Poisson. En effet, il est facile de voir que pour un PP de Poisson, on
a g(x, y) = 1. Si g(x, y) > 1, cela indique que pour ce PP, il est plus probable
d’observer un couple de points en x et y que pour un PP de Poisson ayant la
même intensité. Si le PP est stationnaire et isotrope, g est une fonction de
r =‖ x− y ‖ ; g(r) > 1 indique une tendance à l’agrégation pour des points
à distance r, et inversement, g(r) < 1 indique une tendance à la répulsion
pour des points à distance r.
Une façon alternative de caractériser les propriétés du second ordre est au
travers de la fonction K de Ripley et de la fonction L qui lui est associée.
Pour un PP stationnaire, introduisons la mesure κ, appellée mesure des
moments réduits d’ordre deux, pour un borélien B par

κ(B) =
1

λ2

∫
B
ρ2(x)dx.

Si de plus le PP est isotrope, en prenant pour B une boule B(0, r) de centre
l’origine et de rayon r, la fonction K de Ripley est définie par

K(r) = κ(B(0, r)).

K(r) peut aussi s’interpréter comme le nombre moyen de points du PP dans
une boule centrée en un des points du PP, hormis le centre lui-même. Pour
un PP de Poisson homogène, K(r) = πr2 et ceci engendre une autre méthode
de comparaison avec un modèle de Poisson. Pour faciliter la comparaison et
aussi pour réduire la variance, il est d’usage de renormaliser la fonction K
en définissant la fonction L par

L(r) = (
K(r)

π
)1/2.
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Figure 4.6 – Processus régulier à gauche et agrégé à droite

Pour le PP de Poisson homogène, la fonction L est donc égale à r. Lorsque
L(r) − r > 0, cela indique un phénomène d’agrégation pour des distances
inférieures ou égales à r, et lorsque L(r)−r > 0, cela indique un phénomène
de régularité pour des distances inférieures ou égales à r.
Pour un PP stationnaire et isotrope, les relations suivantes existent entre g,
ρ2 et K :

g(r) =
ρ2(r)

λ2
=
K ′(r)

2πr
,K(r) =

2π

λ2

∫ r

0
uρ2(u)du. (4.5)

Pour estimer ces diverses caractéristiques du second ordre, on peut commen-
cer par estimer ρ2 par un estimateur à noyau de la densité incluant une cor-
rection de bord (diverses corrections existent). On peut alors en déduire un
estimateur de la fonction de corrélation des paires en divisant par λ̂(x)λ̂(y),
où λ̂ est par exemple l’estimateur de Diggle de l’intensité (voir 4.4).
On peut estimer directement la fonction K par

K̂(r) =
∑

x∈X,y∈W	r

1(x− y ∈ B(0, r))

λ̂(x)λ̂(y)
,

où W	r désigne l’ensemble des points de la fenêtre W tels que la boule
centré en ce point et de rayon r soit entièrement incluse dans W . D’autres
formules existent mais consistent essentiellement à faire d’autres corrections
de bord. Cet estimateur se calcule dans spatstat avec la fonction Kest et
l’option correction=“border”. Notons que les relations 4.5 permettent aussi
de déduire un estimateur de g à partir d’un estimateur de K.
La figure 4.6 montre un estimateur de la fonction de corrélation des paires
pour les données cells et redwood.
La figure 4.7 présente des estimateurs des fonctions de Ripley pour les
données cells et redwood et l’on voit bien à nouveau la différence de com-
portement entre processus régulier et agrégé.
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Figure 4.8 – Processus régulier à gauche et agrégé à droite

Enfin la figure 4.8 présente des enveloppes de la fonction L pour les données
cells et redwood.
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Chapitre 5

Méthodes exploratoires pour
données spatiales

L’analyse exploratoire est préalable à toute modélisation statistique :
c’est la phase de mise en place des bases de données, de leur nettoyage et du
premier contact avec les variables. Il faut recenser et traiter les valeurs man-
quantes et les valeurs aberrantes, et produire les premiers diagnostics des-
criptifs uni et multidimensionnels. Dans le cas de données géoréférencées, aux
techniques habituelles sur lesquelles nous ne reviendrons pas ici, s’ajoutent
des méthodes spécifiques qui font l’objet de ce chapitre. Les Systèmes d’In-
formation Géographique 1 (“SIG”), permettent de gérer et de cartographier
des données géoréférencées mais ils n’intègrent pas ou peu d’outils statis-
tiques sophistiqués, en particulier les outils spécifiques aux données spatiales.
Nous utiliserons le terme “variable spatiale” pour désigner un ensemble de
n observations d’un champ aléatoire en n sites ou n zones. Nous présentons
dans ce chapitre les fondements de cette analyse. Un module de R dénommé
“GeoXp” permet de mettre ces techniques en pratique (Laurent et al. 2012).
Il permet une exploration interactive avec un dialogue entre graphique sta-
tistique et carte géographique.

5.1 Analyse exploratoire des matrices de voisinage

Avant de faire le choix d’utiliser une matrice de voisinage particulière,
il est bon d’en faire une exploration. Par exemple, on peut représenter gra-
phiquement les liens non nuls par des segments sur la carte et produire
quelques caractéristiques de la distribution du nombre de voisins et de la
distance au plus proche voisin. On peut ainsi comparer ces caractéristiques
pour quelques choix différents de matrices.
Pour une matrice de voisinage W et une variable X données, le graphique

1. Exemple de SIG libre : Quantum GIS, http://www.qgis.org/
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des voisinages consiste en un simple diagramme de dispersion où l’on porte
pour tout site i, en abscisse la valeur Xi de la variable X au site i et en
ordonnée les valeurs Xj de la variable X aux sites j voisins de i au sens
de W , c’est-à-dire tels que wij 6= 0. Du point de vue de l’exploration de
la matrice de voisinage, ce diagramme permet d’explorer la matrice dans le
sens suivant :

1. il permet de visualiser qui est voisin de qui,

2. il permet d’aprécier visuellement la taille des voisinages lorsque la
matrice est définie par un nombre de plus proches voisins : la “largeur”
de la bande autour de la diagonale sur le nuage illustre l’étendue des
voisinages,

3. il permet d’aprécier visuellement le nombre de voisins lorsque la ma-
trice est définie par une distance seuil.

5.2 Analyse exploratoire d’une tendance direction-
nelle

Une variable présente une tendance dans une direction donnée, par exemple
Sud-Est/Nord-Ouest, si celle-ci présente une moyenne non constante dans
cette direction. Supposons dans un premier temps que la direction est connue
et pour simplifier qu’il s’agit de la direction Nord-Sud ou Est-Ouest. Pour
mettre en évidence cette tendance et la décrire, c’est-à-dire préciser comment
varie la moyenne (croissante, décroissante, en forme de U, etc.), on superpose
une grille régulière à la carte faite de petits rectangles, pour un nombre choisi
de lignes et de colonnes. On calcule dans chaque rectangle les moyennes et
médianes de toutes les unités dont le centröıde se situe dans ce rectangle,
et on fait de même sur chaque ligne et colonne. On met ensuite la carte en
regard avec à droite les moyennes et/ou médianes par ligne et en dessous
les moyennes et/ou médianes par colonne (ainsi que du nuage des moyennes
et/ou médianes par rectangle). La variation sur le graphique de droite des
moyennes et/ou médianes (que l’on peut interpoler pour une meilleure li-
sibilité) met alors en relief une tendance Nord-Sud si les moyennes et/ou
médianes ne sont pas constantes et respectivement la variation sur le gra-
phique du dessous une tendance Est-Ouest si les moyennes et/ou médianes
ne sont pas constantes. Si maintenant la direction est connue mais n’est ni
Nord-Sud, ni Est-Ouest, on peut alors introduire un angle de rotation de la
carte permettant de se ramener à la situation précédente. Finalement, dans
le cas plus réaliste où l’on ne connait pas d’avance une direction de ten-
dance, il faut alors utiliser un autre graphique exploratoire pour déterminer
une telle direction. Pour un couple de sites i et j sur la carte, on définit
l’angle θij entre l’axe des abscisses et le vecteur d’origine i et d’extrémité
j. On réalise ensuite un diagramme de dispersion dans lequel on associe à
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l’angle θij la valeur absolue | Xi−Xj | de la différence entre les valeurs de la
variable en ces deux sites. Si la variable présente une tendance directionnelle
dans la direction θ, les différences | Xi −Xj | pour les couples (i, j) tels que
θij est voisin de θ vont être plus importantes que dans les autres directions.
Notons que ce graphique permet de détecter des tendances bien marquées.

5.3 Analyse exploratoire de l’autocorrélation spa-
tiale

5.3.1 Le diagramme de Moran

Il s’agit d’un outil permettant d’explorer l’autocorrélation spatiale d’une
variable surfacique continue. Un diagramme de Moran est un nuage de points
présentant une variable d’interêt X en abscisse et la variable spatialement
décalée WX en ordonnée. La variable X est centrée en abscisse et par
conséquent la variable spatialement décalée WX en ordonnée est également
centrée lorsque W est normalisée. Un point du quadrant x ≥ 0, y ≥ 0 cor-
respond à un site où la variable X est supérieure à sa moyenne et où la
variable WX également, témoignant d’une autocorrélation locale positive.
Un point du quadrant x ≤ 0, y ≥ 0 correspond à un site où la variable X
est inférieure à sa moyenne et où la variable WX est par contre supérieure
à sa moyenne, témoignant d’une autocorrélation locale négative. Les deux
autres quadrants s’interprètent de même. Une non linéarité du nuage indique
plusieurs régimes d’association spatiale.

5.3.2 Le nuage de variogramme

Il s’agit d’un outil permettant d’explorer l’autocorrélation spatiale d’une
variable ponctuelle continue. Pour une variable donnée possédant un va-
riogramme isotrope, le “nuage de variogramme” est une représentation du
demi-carré de la différence entre les valeurs de la variable mesurée en deux
sites distants de h en fonction de la distance h pour tous les couples de sites.
Si l’on revient à la formule (4.2) définissant le variogramme, on voit aisément
qu’un lissage de ce nuage de points estime la fonction γ(h). Ce lissage peut
être superposé au nuage de points permettant ainsi d’analyser les diverses
caractéristiques du variogramme (portée, seuil, effet de pépite).

5.4 Analyse exploratoire des points atypiques spa-
tiaux

En statistique spatiale, il y deux sortes de points atypiques : les atypiques
au sens ordinaire que nous nommerons ici “globaux” par opposition aux
atypiques locaux que nous allons définir.
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Au sens ordinaire, un point est dit atypique global pour la variable X si sa
valeur pour X est extrême par rapport à l’ensemble de la distribution de X.
Il y a bien sûr un degré de liberté dans la façon dont on définit “extrême”.
Etant donnée une structure de voisinage sur l’ensemble des sites, un point
est dit atypique local pour la variable X si sa valeur pour X est extrême
par rapport à l’ensemble de la sous-distribution des X sur les sites voisins
du site concerné.
Un aberrant global est en général un aberrant local (sauf dans le cas de
groupes d’atypiques), mais un aberrant local peut très bien ne pas être un
aberrant global.
Divers graphiques exploratoires permettent de détecter les atypiques locaux.
On peut utiliser le nuage de variogramme, le diagramme des voisins, le dia-
gramme de Moran, etc.
Avec le diagramme des voisins, les points éloignés de la diagonale corres-
pondent à des couples de sites voisins dont les valeurs différent. Un atypique
local aura donc sur sa verticale des points éloignés de la diagonale.
Avec le diagramme de Moran, on peut repérer certains atypiques locaux,
ceux qui contribuent au I de Moran global avec un I local significatif.
Avec le nuage de variogramme, on procède ainsi. Tout d’abord, il est préférable
pour cet objectif d’utiliser la version robuste du variogramme obtenue en
remplaçant le carré de la différence par la racine carrée de la différence : en

effet, pour un champ gaussien isotrope X, la loi de
(Xs+h−Xs)2

2γ(h) est un χ2 à un

degré de liberté donc une loi asymétrique, alors que la loi de
(Xs+h−Xs)1/2

2γ(h) est
presque symétrique. Décider si une valeur élevée est un point atypique est
plus facile sur une loi symétrique car une loi asymétrique peut produire des
valeurs élevées qui ne sont pas atypiques. On peut repérer, sur le nuage de
variogramme, des couples de sites atypiques en ce sens que la différence entre
les valeurs du champ entre ces sites est grande comparée aux différences entre
couples de sites distants de la même distance. En pratique, ce sont surtout
les atypiques globaux qui ressortent.
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Chapitre 6

Tests d’autocorrélation et
d’homogénéité spatiale

On s’intéresse dans ce chapitre à la question de savoir si les données
nécéssitent un traitement spécifique aux données spatiales. En effet une va-
riable observée spatialement peut très bien dans l’absolu ne pas présenter
d’hétérogénéité ni d’autocorrélation et dans ce cas elle peut être étudiée
avec des techniques usuelles. Dans le cas de données de type ponctuel ou
de type surfacique, il s’agira de répondre à la question : une variable ob-
servée présente-t-elle de l’autocorrélation spatiale et comment construire un
test. Dans le cas de données de type semis de points, il s’agira de tester
l’homogénéité spatiale du phénomène.

6.1 Test de Moran pour variable surfacique conti-
nue

Il s’agit de tester l’hypothèse d’absence d’autocorrélation spatiale pour
une variable surfacique continueX. L’hypothèse nulle estH0 : “absence d’au-
tocorrélation spatiale” et l’alternative est H1 : “présence d’autocorrélation
spatiale”. Cette spécification est trop vague pour construire un test et il est
nécéssaire de faire des hypothèses plus précises pour H0 de façon à avoir une
statistique de test de distribution connue. Il existe deux modèles classiques
pour cela.
Dans le modèle dit “free sampling”, on suppose que sousH0,X1, · · · , Xn sont
indépendantes et identiquement distribuées de loi N (0, σ2). Ceci conduit
au test, dit “test gaussien”, qui teste en réalité si l’échantillon observé est
représentatif de la distribution d’un vecteur gaussien de composantes i.i.d.
La statistique de test est l’indice de Moran I associé à une matrice de voi-
sinage W choisie (ce test dépend donc de ce choix). La loi de I sous H0 ne
peut pas être exprimée analytiquement et on utilise donc la loi asymptotique
de I sous H0. Pour cela, on a besoin de normaliser d’abord l’indice en lui
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enlevant sa moyenne et en le divisant par son écart-type. Le calcul de cette
moyenne et cet écart-type du I de Moran utilise le Théorème de Pitman
et Koopmans. On obtient

E(I) = − 1

n− 1
,

et

E(I2) =
n2S1 − nS2 + 3S2

0

(n2 − 1)S2
0

,

où les quantités dépendent de la matrice de voisinage W

S0 =
∑
i 6=j

wij , S1 =
1

2

∑
i 6=j

(wij + wji)
2, S2 =

∑
i 6=j

(wi+ + w+i)
2,

avec
wi+ =

∑
j

wij , w+j =
∑
j

wji.

On utilise alors la loi asymptotique N (0, 1) de l’indice normalisé pour cal-
culer une p-valeur associée.
Dans le modèle dit “non free sampling” ou modèle de randomisation, on sup-
pose que conditionnellement aux observations Xi = xi, en l’absence d’au-
tocorrélation spatiale les n! permutations des réalisations x1, · · · , xn sont
équiprobables. Ceci conduit à l’aide de la statistique de Moran au test, dit
“test de permutation”, qui teste si l’échantillon observé est représentatif
d’une allocation aléatoire uniforme des valeurs x1, · · · , xn aux n sites de la
carte. On peut également calculer les moments de I sous cette hypothèse
nulle et la moyenne est la même que pour le modèle “free sampling” mais
la formule de la variance est plus compliquée.
Le choix entre “free sampling” et “non free sampling” peut être guidé par le
contexte mais notons que si X suit une loi F inconnue de variance finie, on
a toujours la même espérance pour l’indice de Moran et le moment d’ordre
deux vérifie E(I2) = E(ER(I2)), où ER désigne l’espérance sous l’hypothèse
de randomisation.
Il existe également un test de Monte Carlo basé sur l’indice de Moran qui
ne nécéssite pas le choix d’un modèle. En pratique, on tire au hasard T per-
mutations des sites et pour chaque permutation on realloue les valeurs de
la variable sur les sites permutés. On calcule les indices de Moran pour cha-
cune de T permutations, leur minimum Imin et maximum Imax. On compare
alors la valeur observée de l’indice de Moran avec l’intervalle [Imin, Imax].
On rejette H0 si l’indice de Moran n’est pas dans cet intervalle. Le “pseudo-
niveau de signification” empirique du test est égal à (L + 1)/(T + 1) où L
est le nombre de fois parmi les T permutations que l’indice de Moran recal-
culé dépasse la valeur observée sur l’échantillon. (le +1 vient du fait qu’on
compte l’observation initiale ainsi que les T permutations).
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6.2 Test de Moran pour variable surfacique quali-
tative

De même que pour les variables surfaciques continues, il y a deux modèles
différents selon l’hypothèse nulle. Si X est qualitative avec k modalités, le
modèle “free sampling” suppose un tirage aléatoire avec remise dans une
population ayant k groupes de proportions p1, · · · , pk connues : les Xi sont
alors indépendantes de loi multinomiale. En pratique, p1, · · · , pk doivent être
estimées par les fréquences empiriques. Pour le modèle “non free sampling”,
on suppose un tirage aléatoire sans remise dans une population ayant k
groupes d’effectifs connus n1, · · · , nk : la loi du n-uplet (X1, · · · , Xn) est la
loi hypergéométrique conditionnelle aux effectifs de groupe observés.
Les statistiques utilisées pour construire le test sont les “join counts” et
leurs moments sous l’hypothèse nulle sont connus dans le cas de variables
dichotomiques.
Dans ce cas pour le modèle “free sampling”, les Xi sont i.i.d. Bernouilli
B(1, p). Les deux premiers moments sont

E(BB) =
1

2
S0p

2

4Var(BB) = p2(1− p)[S1(1− p) + S2p]

E(BW ) = S0p(1− p)

4Var(BW ) = [4S1p(1− p) + S2p(1− p)(1− 4p(1− p))].

Pour le modèle “non free sampling”, il y a nB =
∑

iXi valeurs 1 et n− nB
valeurs 0, et l’on fait un tirage sans remise.
Avec la notation n(b) = n(n − 1) · · · (n − b + 1), on peut écrire les deux
premiers moments et la variance asymptotique :

E(BB) =
S0

2

n
(2)
B

n(2)

4Var(BB) = [S1(
n

(2)
B

n(2)
− 2

n
(3)
B

n(3)
+
n

(4)
B

n(4)
)

+ S2(
n

(3)
B

n(3)
−
n

(4)
B

n(4)
) +

S2
0n

(4)
B

n(4)
− (

S0n
(2)
B

n(2)
)2]

4asVar(BB) = p2(1− p)[S1(1− p) + S2p− 4
S2

0p

n
]
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6.3 Test d’autocorrélation pour variable ponctuelle
continue

On peut tester l’absence d’autocorrélation spatiale d’une variable ponc-
tuelle continue à l’aide du variogramme empirique avec une approche par
simulations. De même que pour le test de Monte Carlo d’un indice de Moran,
cela consiste à faire des permutations aléatoires des valeurs de la variable
sur les sites et à recalculer le variogramme empirique sur chaque permuta-
tion. Si le variogramme empirique tombe dans 95 pour cent de l’étendue de
ces variogrammes empiriques, alors on ne peut pas rejeter l’absence d’auto-
corrélation spatiale et on peut penser que la forme observée de la courbe,
même si elle n’est pas plate, a pu être un effet du hasard.

6.4 Test d’autocorrélation des résidus d’un modèle
de régression linéaire ordinaire pour variable
surfacique continue

Il est intéressant de tester l’autocorrélation spatiale d’une variable mais
dans une démarche de modélisation, on est fréquemment amené à tester
l’autocorrélation spatiale de résidus dans un modèle linéaire ordinaire. En
effet celui-ci servira de modèle de base et si une autocorrélation apparâıt
dans ses résidus, on s’orientera alors vers un modèle spatial. Il n’est ce-
pendant pas possible d’utiliser le même test de Moran que précédemment
pour le cas d’une variable surfacique continue car même en l’absence d’au-
tocorrélation spatiale des erreurs εi du modèle linéaire, les résidus estimés
ne sont pas indépendants. On utilise comme statistique de test l’indice de
Moran généralisé qui n’est autre que l’indice de Moran ordinaire appliqué
aux résidus du modèle linéaire mais il faut ajuster les calculs de moments.
Dans le cas D = In, on montre que sous l’hypothèse d’absence d’auto-
corrélation spatiale

E(I) = − trA

n− k
,

où k est le nombre de colonnes de X et A = (X ′X)−1X ′WX.

6.5 Tests d’homogénéité spatiale pour semis de
points

On dit qu’un processus ponctuel vérifie l’hypothèse d’homogénéité spa-
tiale (hypothèse CSR pour “complete spatial randomness”) si c’est un pro-
cessus de Poisson homogène. Cette hypothèse implique donc à la fois l’ho-
mogénéité de la répartition des points en moyenne mais aussi l’indépendance
entre les observations dans des zones disjointes (une propriété d’ordre 1 et
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une propriété d’ordre 2). Tester l’hypthèse CSR est la première étape dans
la modélisation d’un processus ponctuel dans le sens où si le processus est
Poisson homogène, il sera entièrement caractérisé par le réel λ du paragraphe
4.5.1. Si cela n’est pas le cas, c’est alors que le travail de modélisation peut
commencer. Il existe de nombreux tests de CSR mais nous allons seulement
développer deux approches.

6.5.1 Test basé sur les quadrats

Ce test très ancien consiste à diviser la fenêtre d’observation en m qua-
drats, c’est à dire en cellules rectangulaires ou carrées d’égale surface et
à dénombrer les points du processus dans chaque cellule, notés nk, k =
1, . . . ,m. Soit n̄ = n

m le nombre moyen de points par cellule. Considérons
alors la quantité suivante

I =

m∑
k=1

(nk − n̄)2

(m− 1)n̄
.

I peut d’abord être interprété comme le rapport entre la variance em-
pirique des effectifs nk et leur moyenne (coefficient de variation). Les cellules
étant de même surface, sous l’hypothèse CSR, les effectifs sont équidistribuées
de loi de Poisson et comme la moyenne d’une loi de Poisson est égale à sa
variance, I n’est autre que le ratio de deux estimateurs de la variance. Par
ailleurs, conditionnellement au nombre total de points, (m− 1)I n’est autre
que le χ2 de Pearson d’ajustement de la série des effectifs des quadrats.
Sous l’hypothèse CSR, la loi de (m − 1)I peut être approximée asympto-
tiquement par une loi de χ2 à m − 1 degrés de liberté. Lorsque cet indice
est significativement grand et que l’homogénéité est respectée, il denote une
tendance à l’agrégation, c’est à dire une dépendance entre les points de type
attraction. Inversement, lorsque cet indice est significativement petit et que
l’homogénéité est respectée, il traduit une tendance à la régularité, c’est à
dire une dépendance entre les points de type répulsion.

6.5.2 Diagnostic basé sur des simulations

Une autre approche pour évaluer l’hypothèse CSR consiste à simuler
M réalisations d’un processus de Poisson homogène et à calculer des ca-
ractéristiques du processus (fonctions F ,G, K ou L) pour chaque simulation.
On trace ensuite les enveloppes de ces courbes sur l’ensemble des simulations
et on évalue si la caractéristique observée sur l’échantillon entre ou non dans
ces enveloppes.
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Chapitre 7

Modèles de régression
spatiale

Le contexte général des modèles de régression spatiale pour variables
surfaciques est le suivant. On dispose d’une variable dépendante dont les
mesures en n sites donnent un vecteur aléatoire Y (quantitatif, univarié). Les
sites sont représentés par leur centroide si. On dispose également d’une va-
riable indépendante dont les mesures en n sites donnent un vecteur aléatoire
X (quantitatif , multivarié de dimension p), observé sur les mêmes zones.
En général on suppose de plus que X et Y ont une distribution gaussienne.
On verra que la modélisation de la tendance ne présente pas de spécificité
technique dans les modèles spatiaux alors que celle de l’autocorrélation en
présente. C’est cette structuration de l’autocorrélation prenant en compte le
fait que celle-ci découle de la proximité relative des points dans un certain
espace qui fait la force des modèles spatiaux.

7.1 Un catalogue de modèles de régression spa-
tiale

On peut faire entrer la plupart de ces modèles dans le cadre suivant :

Y = µ+ ε

avec µ = E(Y | X) (d’où E(ε) = 0 et X ⊥ Y ), Var(Y ) = V .
Les données spatiales présentent souvent une hétéroscédasticité, c’est pour-
quoi dans un premier temps le modèle de base non-spatial WLS (pour
“weighted least squares“) qui nous servira d’étalon est

Y = Xβ + ε (7.1)

avec E(ε) = 0,Var(ε) = σ2D, où D est une matrice diagonale, D = In
correspondant au modèle OLS.
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La présence de D correspond à l’ hétéroscédasticité. Par exemple, si Ti (resp :
τi) est le taux de chomage observé (resp : théorique) dans la zone i et Pi
est la population de la zone. Alors var(Ti) = τi(1−τi)

Pi
donc même si le taux

de chomage est constant, il faut prendre des poids sur la diagonale de D
proportionnels à 1

Pi
. Plus généralement, si la variable à expliquer est une

proportion ou une moyenne (par exemple un taux de chomage, un mon-
tant de dépenses mensuel par ménage), il est naturel de penser qu’un ra-
tio avec un dénominateur plus grand est moins sujet à variabilité que si
ce dénominateur est faible. Plus précisément, on peut supposer que la va-
riance est inversement proportionnelle au dénominateur, ce qui se justifie par
le raisonnement suivant. S’il s’agit d’une moyenne empirique, prenons par
exemple le montant de dépenses mensuel par ménage, on sait que la variance
d’une moyenne empirique est de la forme σ2

n , où σ2 est la variance de la va-
riable sous-jacente, ici le montant de dépense d’un ménage, et n est la taille
de la sous population sur laquelle cette moyenne est calculée, ici le nombre
de ménages de la zone. Si l’on suppose que la variance σ2 est homogène sur
l’ensemble des zones, la différence de variance entre zones s’explique par la
différence du nombre de ménages et l’on peut donc prendre la pondération
inversement proportionnelle au nombre de ménages de la zone. S’il s’agit à
présent d’une proportion, le raisonnement est le même (une proportion étant
une moyenne de variables de Bernoulli) en supposant le paramètre de la Ber-
noulli homogène sur les zones, et dans le cas du taux de chomage, on peut
donc prendre la pondération inversement proportionnelle à la population.
Rappellons également les formules usuelles relatives à l’estimation par maxi-
mum de vraisemblance du modèle WLS :

β̂ = (X ′D−1X)−1X ′D−1Y

Var(β̂) = σ2(X ′D−1X)−1

Var(ε̂) = σ2PDP ′, P = In − (X ′D−1X)−1X ′D−1

σ̂2 =
(Y −Xβ̂)′D−1(Y −Xβ̂)2

n− p

Comme on l’a déja vu, un des problèmes de ce type de données est que
l’on dispose en général d’une seule réalisation, c’est à dire de l’observation
du couple (X,Y ) en n sites. Sans autre restriction sur ce modèle, on a n

observations pour estimer n+ n(n+1)
2 paramètres d’où la nécéssité de réduire

le nombre de paramètres.
Une première restriction consiste à exprimer la tendance µ comme une fonc-
tion des coordonnées géographiques ou de régresseurs (avec éventuellement
des régresseurs spatialement décalés), ou encore une combinaison des deux.
Les autres restrictions vont porter sur la modélisation de la structure de
covariance V .
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Etant donnée une matrice de voisinage W normalisée et une variable
Z, la variable spatialement décalée WZ présente automatiquement une au-
tocorrélation spatiale avec Z. La famille des modèles spatiaux simultanés
consiste à introduire une telle variable dans le modèle non spatial OLS ou
WLS à divers endroits de l’équation (7.1). On obtient ainsi les modèles sui-
vants :

– introduire WX en explicative dans le modèle WLS conduit au modèle
SLX, (en anglais “spatially lagged-X model”)

– introduire WY dans le membre de droite du modèle WLS conduit au
modèle LAG (pour “lagged-Y model”)

– introduire WX dans le modèle LAG conduit au modèle SDM (pour
“Spatial Durbin”)

– utiliser le modèle LAG pour le terme d’erreur conduit au modèle SEM
(pour “Spatial Error model”)

– combiner les modèles LAG et SEM models conduit au modèle général
SAC

– introduire Wε dans le modèle WLS conduit au modèle MA (pour
“moving average”)

– combiner les modèles LAG et MA conduit au modèle SARMA.
Nous nous concentrerons dans la suite sur les modèles de base LAG, SDM
et SEM. Mais dans un premier temps écrivons le descriptif de chacun des
modèles ci dessus en s’efforçant de comparer les différentes modélisations de
la tendance µ et de la variance V dans chacun d’eux.

7.1.1 Le modèle SLX

Une première façon simple d’introduire de l’interaction entre unités spa-
tiales est d’introduire une variable spatialement décalée parmi les explica-
tives :

Y = Xβ +WZδ + ε,

où comme précedemment ε est centré de matrice de variance-covariance
diagonale Var(ε) = σ2D, la diagonale de D contenant la pondération. L’ob-
servation Y pour une unité spatiale donnée est donc ainsi expliquée par la
valeur de X pour cette unité et par la moyenne des valeurs de Z pour les
unités voisines. Par exemple, la production d’une région peut être expliquée
par la disponibilité du travail et par le montant du capital public dans les
zones voisines. L’ajustement de ce modèle peut se faire par moindres carrés
ordinaires (OLS). Attention : si W est normalisée, il ne faut pas que la
constante apparaisse à la fois dans X et dans Z sous peine de non identifia-
bilité. Z peut être égale ou différente de X. On obtient pour µ et V :

µ = Xβ +WZδ
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et
V = σ2D.

7.1.2 Le modèle LAG

Le modèle LAG consiste à prendre en compte pour expliquer la valeur
de Y sur une unité spatiale donnée non seulement les explicatives X mais
aussi la moyenne de Y dans les zones voisines ce qui conduit à

Y = ρWY +Xβ + ε,

où ε est un bruit blanc spatial, WY est la variable endogène spatialement
décalée, (I − ρW )Y est la variable endogène spatialement filtrée. Le pa-
ramètre ρ est lié à l’autocorrélation spatiale présente dans Y .
Si la matrice (I − ρW ) est non singulière, le modèle prends la forme réduite
suivante

Y = (I − ρW )−1Xβ + (I − ρW )−1ε.

On obtient alors aisément pour µ et V :

µ = (I − ρW )−1Xβ

Var(Y ) = σ2{(I − ρW ′)(I − ρW )}−1.

Notons que cette formule de variance implique la présence d’hétéroscédasticité
même si les erreurs ε sont homoscédastiques.

7.1.3 Le modèle SDM

En ajoutant au modèle LAG une variable explicative spatialement décalée
on obtient le modèle SDM

Y = ρWY +Xβ +WZδ + ε,

où ε est un bruit blanc spatial. Sa forme réduite s’écrit

Y = (I − ρW )−1(Xβ +WZδ) + (I − ρW )−1ε.

Les expressions suivantes en découlent pour µ et V :

µ = (I − ρW )−1(Xβ +WZδ)

et
Var(Y ) = σ2{(I − ρW ′)(I − ρW )}−1.

Notons que lorsque le paramètre ρ est nul, le modèle SDM devient un modèle
SLX.
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7.1.4 Le modèle SEM

Le modèle SEM introduit l’ autocorrélation spatiale dans le processus
des erreurs

Y = Xβ + ε (7.2)

ε = λWε+ U, (7.3)

où U est un bruit blanc spatial. Le paramètre λ est lié à l’intensité de
l’autocorrélation spatiale présente dans les erreurs résiduelles.
On peut écrire ce modèle de façon équivalente :

(I − λW )Y = (I − λW )Xβ + U.

Si la matrice (I −λW ) est non singulière, ce modèle admet la forme réduite
suivante

Y = Xβ + (I − λW )−1U

On en déduit aisément l’expression de µ et V :

µ = Xβ

Var(Y ) = σ2{(I − λW ′)(I − λW )}−1.

Comme pour le modèle LAG, cette variance implique une hétéroscédasticité
automatique même si les erreurs ε sont homoscédastiques.

7.1.5 Le modèle SAC

En combinant les modèles LAG et SEM, on obtient le modèle SAC

Y = ρW1Y +Xβ + ε

ε = λW2ε+ U,

Si la matrice (I −λW ) est non singulière, ce modèle admet la forme réduite
suivante

Y = (I − ρW1)−1Xβ + (I − ρW1)−1(I − λW2)−1U

On en déduit aisément l’expression de µ et V :

µ = (I − ρW1)−1Xβ

et
V = [(I − λW ′1)(I − ρW ′2)(I − λW2)(I − ρW1)]−1
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7.1.6 Le modèle SARMA

On peut comme en séries temporelles construire un modèle moyenne
mobiles en faisant intervenir à droite de l’équation de régression les erreurs
spatialement décalées, c’est à dire Wε. Le modèle MA s’écrit

Yi = µ + λ
∑n

i=1wijεj + εi où ε est un bruit blanc spatial, E(ε) =
0,Var(ε) = σ2D (D matrice diagonale). Alors on a V = σ2(In+λW )D(In+
λW )′.
En combinant ce modèle avec un modèle LAG, on obtient

Y = ρW1Y +Xβ + ε

ε = (In + λW2)u,

où ε est un bruit blanc spatial.
On obtient alors

µ = (In − ρW1)−1Xβ

et
V = σ2(In − ρW1)−1(In + λW2)D(In + λW2)′(In − ρW1)−1′.

7.2 Maximum de vraisemblance dans les modèles
SAR

Nous allons développer la méthode du maximum de vraisemblance pour
l’estimation des coefficients dans les modèles de la famille SAR. Notons
cependant qu’il existe d’autres méthodes telles la méthode 2SLS (moindres
carrés en deux étapes) ou la méthode GMM (méthode des moments généralisés
que nous ne verrons pas dans ce cours).

7.2.1 Conditions sur les coefficients

Dans la famille des modèles simultanés autorégressifs SAR, on a vu que
la condition de non singularité de la matrice filtre I−ρW est omniprésente.
Cette condition va impliquer des contraintes sur les coefficients, ρ dans le
modèle LAG et λ dans le modèle SEM. Soient ωmin et ωmax respectivement
les valeurs propres plus faible et plus grande de la matrice de voisinage W
(celles-ci peuvent être complexes si W n’est pas semblable à une matrice
symétrique).
Si W est symétrique, les conditions

1

ωmin
< ρ <

1

ωmax
,

sont suffisantes pour la non-singularité de I − ρW . Notons que comme
(trace(W ) = 0, on a que ωmin < 0 et ωmax > 0). Si W est normalisée, alors
ωmax = 1 et ρ ∈ [0, 1[ est une condition suffisante pour la non-singularité de
I − ρW .
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7.2.2 Maximum de vraisemblance dans le modèle LAG

Rappelons que pour une matrice de voisinage normalisée donnée, et pour
une variable Y donnée, le vecteur WY appellé variable spatialement décalée
associée à Y, représente la moyenne des observations sur les unités spatiales
voisines au sens de W . Il est donc naturel de penser que la valeur de Y
peut dépendre de celle de ses voisins WY . Si l’on centre Y pour éliminer la
constante, on peut imaginer le modèle suivant

Y = ρWY + ε,

où le paramètre ρ mesure l’influence moyenne des voisins sur une unité spa-
tiale ou encore l’intensité de l’interaction entre Y et ses voisins. ε contient
la variabilité de Y non expliquée par le voisinage et sera modélisé ici par
une variable de coordonnées i.i.d. Pour modéliser la moyenne de Y , on peut
naturellement envisager aussi de rajouter à ce modèle des variables explica-
tives

Y = ρWY +Xβ + ε

WY est la variable endogène décalée et (I − ρW )Y la variable endogène
filtrée. Notons que si la matrice (I − ρW ) est non singulière, ce modèle
admet l’écriture équivalente suivante

Y = (I − ρW )−1Xβ + (I − ρW )−1ε.

On a donc l’expression suivante pour la moyenne et la variance

(I − ρW )−1Xβ,

Var(Y ) = σ2{(I − ρW ′)(I − ρW )}−1.

Notons que cette variance implique une hétéroscédasticité même dans le cas
où les erreurs sont homoscédastiques.
Il y a dans ce modèle des contraintes sur le paramètre ρ qui sont

1

λmin
< ρ <

1

λmax
,

où λmin et λmax représentent la plus petite et la plus grande valeur propre
de la matrice de voisinage W .
On montre aisément que les estimateurs des moindres carrés ordinaires sont
biaisés dans ce modèle et c’est pourquoi on doit recourir au maximum de
vraisemblance. Sous l’hypothèse de normalité des erreurs ε ∼ N (0, σ2I), la
vraisemblance dans ce modèle s’écrit

L(y | ρ, σ2) =
1

2πσn
det(I−ρW ) exp{ 1

2σ2
(y−Xβ)′(I−ρW )′(I−ρW )(y−Xβ)},
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d’où la log-vraisemblance

logL(y | ρ, σ2) = − log(2π)−n log(σ)+log(det((I−ρW ))− 1

2σ2
(y−Xβ)′(I−ρW )′(I−ρW )(y−Xβ).

Si l’on dérive par rapport à σ, β et ρ, on peut obtenir l’ expression suivante
de σ̂ et β̂ en fonction de ρ̂

σ̂2(ρ) =
1

n
(y −Xβ̂(ρ))′(I − ρW )′(I − ρW )(y −Xβ̂(ρ)),

et

β̂(ρ) = (X ′X)−1X ′(I − ρW )Y.

Lorsqu’on reporte ces expressions dans le log-vraisemblance, on obtient ce
qui s’appelle la log-vraisemblance concentrée qu’il reste à minimiser par
rapport à ρ et qui vaut à constante près

logL(y | ρ) = log(det((I − ρW ))− n

2
log(y − ρWy)′(y − ρWy).

Cette vraisemblance concentrée doit être optimisée numériquement et le
problème principal est celui de l’évaluation du terme en log déterminant
log(det((I − ρW )) qui peut être couteux lorsque le nombre de sites devient
grand : il faut alors recourir à des approximations de ce terme.
calcul du biais du beta chapeau OLS dans ce modèle (asymp sb au voisinage
de zero)

7.2.3 Maximum de vraisemblance dans le modèle SEM

Considérons à présent un modèle SEM

Y = Xβ + ε

ε = λWε+ U,

où U est une variable de coordonnées i.i.d. Le paramètre λ mesure l’intensité
de l’autocorrélation spatiale entre les résidus.
Notons que si la matrice (I − λW ) est non singulière, ce modèle admet les
écritures équivalentes suivantes

Y = Xβ + (I − λW )−1U

ou encore

(I − λW )Y = (I − λW )Xβ + U.

On a donc l’expression suivante pour la variance
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Var(Y ) = σ2{(I − λW ′)(I − λW )}−1.

Notons que cette variance implique une hétéroscédasticité (les éléments de
la diagonale ne sont pas constants) même dans le cas où les erreurs U sont
homoscédastiques.
Il y a dans ce modèle des contraintes sur le paramètre λ qui sont

1

λmin
< λ <

1

λmax
,

où λmin et λmax représentent la plus petite et la plus grande valeur propre
de la matrice de voisinage W .
Si l’on pose A = I − λW , on a alors Y = Xβ +A−1ε et ε = A(Y −Xβ).
Sous l’hypothèse de normalité des erreurs U ∼ N (0, σ2I), la vraisemblance
de Y s’écrit alors :

fY (y) = fε(ε) | det(
∂ε

∂Y
) |

= fε(ε)det(A)

=
1

(σ
√

2π)n
exp(−‖ ε ‖

2

σ2
) | det( ∂ε

∂Y
) |

7.3 Interprétation des coefficients

Dans un modèle linéaire ordinaire Y = Xβ + ε, les dérivées des coor-
données de Y par rapport à celles de X sont données par ∂yi

∂xik
= βk, pour

tout i et k et ∂yi
∂xjk

= 0, pour tout k et j 6= i.

βk s’ interprète classiquement comme l’accroissement de E(Y ) quand la
k-ème variable explicative augmente d’une unité toutes choses égales par
ailleurs. Le modèle SEM se comporte exactement de la même façon.
Par contre, dans le modèle LAG, ce n’est plus le cas et un changement
de la variable explicative dans une unité spatiale peut se répercuter sur
les Y de toutes les autres unités. L’écriture de LAG par composante est
yi =

∑p
t=1 St(W )itxt + ε̃i, où p est le nombre de variables explicatives, xj

est la j-ème colonne de la matrice X et ε̃ = (I − ρW )−1ε.
Alors, les dérivées partielles de E(yi) par rapport à xjt sont

∂E(yi)

∂xjt
= St(W )ij .

On remarque d’abord que la dérivée croisée de la i-ème composante E(yi)
par rapport à xjt pour j 6= i n’est plus nulle mais égale à St(W )ii.
On en déduit qu’un changement sur l’une des variables explicatives pour
l’individu i va affecter non seulement yi mais aussi tous les yj .
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De plus, l’effet sur E(yi) de l’accroissement d’une unité de la j-ème compo-
sante de la variable explicative xjt n’est plus constant sur les i. On définit
alors trois mesures résumant ces effets.
L’impact direct moyen 1

n

∑n
i=1

∂E(yi)
∂xit

mesure l’effet moyen sur chaque
composante de E(Y ) de l’accroissement d’une unité de xit pour l’individu i
et la variable t.
L’impact indirect moyen ou “spillover” 1

n

∑
i 6=j

∂E(yi)
∂xjt

mesure l’effet moyen

sur chaque composante de E(Y ) de l’accroissement d’une unité de xjt pour
tous les individus j 6= i et la variable t.
L’impact moyen total , égal à 1

n

∑
i,j

∂E(yi)
∂xjt

, est la somme de l’impact

direct moyen et de l’impact indirect moyen et mesure l’effet moyen de l’ac-
croissement de xt d’une unité pour tous les individus.

7.4 Le modèle conditionnel autorégressif CAR

Ce modèle, issu de la littérature géostatistique, est aussi utilisé pour des
variables surfaciques. Contrairement aux autres modèles décrits précedemment
dits simultanés, ce modèle est défini par une contrainte de type markovien
sur la loi conditionnelle de Yi sachant la valeur de Y pour les autres sites

Yi | Y1, · · · , Yi−1, Yi+1, · · · , Yn ∼ N (µi +

n∑
j=1

cij(Yj − µj), τ2
i ),

où
– C = (cij) et D = diag(τ2

1 , · · · , τ2
n) doivent satisfaire les deux condi-

tions D−1C symétrique et D−1(I − C) définie positive.
– µ s’exprime par une combinaison linéaire d’explicatives µ = Xβ

De façon équivalente dans le cas gaussien on peut écrire

Y ∼ N (Xβ, τ2(I − C)−1D)

Pour le modèle CAR à un paramètre CAR(1) C = ρW avec W matrice de
voisinage, la variance s’écrit alors V = τ2(In − ρW )−1D.
En faisant une hypothèse gaussienne, on peut écrire le modèle SAR

Y ∼ N ((I − ρW )−1Xβ, σ2{(I − ρW ′)(I − ρW )}−1)

et le modèle CAR
Y ∼ N (Xβ, τ2(I − C)−1)

d’où la même structure de covariance en posant C = ρ(W +W ′)− ρ2WW ′

et σ = τ mais des moyennes modélisées de façon différente.
L’estimation des paramètres de ce modèle se fait par maximum de vraisem-
blance. Ecrivons la spécification CAR model composante par composante

Yi | Y1, · · · , Yi−1, Yi+1, · · · , Yn ∼ N (µi +

n∑
j=1

cij(Yj − µj), τ2
i )
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En supposant les variances conditionnelles connues à un facteur près τ2
i =

τ2φi et en posant Φ = diag(φ1, · · · , φn), alors D = τ2Φ.
On introduit la transformation Ỹ = Φ−1/2Y , X̃ = Φ−1/2X, et C̃ = Φ−1/2CΦ1/2,
de sorte que le modèle se simplifie en Ỹ ∼ N (X̃β, τ2(I − C̃)−1)
Les estimateurs du maximum de vraisemblance de (β, τ, ρ) peuvent alors se
calculer en maximisant la vraisemblance des données transformées

LL = −n
2

log(2πτ2)− log det(I−ρW )−1/2− 1

2τ2
(Ỹ − X̃β)′(I− C̃)(Ỹ − X̃β)

Première étape : pour le modèle CAR(1), C = ρW et C̃ = ρΦ−1/2WΦ1/2.
A ρ fixé, la maximisation de LL par rapport à (β, τ) est explicite

β̂(ρ) = (X̃ ′(I − C̃)X̃)−1X̃ ′(I − C̃)Ỹ (7.4)

τ̂2(ρ) = (Ỹ − X̃β)′(I − C̃)(Ỹ − X̃β)/n (7.5)

Deuxième étape : on substitue ces valeurs dans LL pour obtenir la log-
vraisemblance dite concentrée

−LL(ρ) =
n

2
(log(2π) + 1) + log det(I − ρW )−1/2 +

n

2
log{Ỹ (I − C̃){I − X̃(X̃ ′(I − C̃)X̃)−1X̃ ′(I − C̃)}Ỹ /n}

La maximisation de LL(ρ) est faite de façon numérique. Comme pour les
modèles simultanés, la difficulté réside dans l’évaluation du terme log det(I−
ρW )−1/2. Les conditions sur D et C impliquent des restrictions sur ρ qui sont
les mêmes que pour le modèle LAG. Une fois ρ̂ estimé, on obtient facilement
β̂ et τ̂2 en insérant (7.4) et (7.5).

7.5 Modélisation géostatistique

Dans la littérature géostatistique, l’approche classique consiste à modéli-
ser tendance et fluctuation en deux étapes. On commence par ajuster une
tendance par exemple en ajustant des polynômes des coordonnées spatiales
ou d’autres variables explicatives. On retranche ensuite celle-ci pour obtenir
une fluctuation estimée. On ajuste ensuite un variogramme (comme on l’a vu
au paragraphe 4.1) à la fluctuation. L’approche “model-based geostatistics”
développée par Diggle et Ribeiro (2007), permet d’étendre ces modèles aux
cas où la distribution de Y n’est plus gaussienne, et propose une estimation
par maximum de vraisemblance en une seule étape.

7.6 Approximation du terme en log-déterminant

Il existe plusieurs méthodes :
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– une approximation par troncature de série (Martin, 1992)

log det(I − ρW ) = tr(log det(I − ρW )) = −
∞∑
i=1

ρi
tr(W i)

i

– Pace and Barry (1997, 1999) font une approximation par Monte Carlo
en utilisant la décomposition de Cholevsky pour profiter de la lacuna-
rité de W

– Pace and LeSage (2004) utilisent une approximation de Chebyshev
– Cressie, Perrin and Thomas-Agnan (2005) proposent une approche par

simulation dans le contexte des modèles CAR.

7.7 Les méthodes MWR et GWR

La régression par fenêtre glissante MWR et la régression geographique-
ment pondérée GWR sont des méthodes d’estimation locales. L’idée est de
choisir une fenêtre centrée sur le point d’intérêt et d’utiliser seulement les
observations qui sont dans cette fenêtre pour estimer la régression au point
d’intérêt. En se sens il s’agit de méthodes localement linéaires où le local se
mesure dans l’espace géographique et non dans l’espace des régresseurs.
Dans l’esprit des méthodes non paramétriques, GWR utilise une pondération
avec une fonction noyau qui a pour effet de faire décroitre l’influence d’un
voisin donné en fonction de sa distance au point d’intérêt. On peut aussi uti-
liser une fenêtre adapatative dans la fonction noyau pour éliminer les effets
de la densité locale de points. C’est le cas par exemple pour la pondération

suivante wij = (1− d2ij
d2

)2 si j est l’un des voisins de i et 0 sinon où d est la
distance de i à ses k plus proches voisins (k est choisi par validation croisée)
ce qui assure que chaque fenêtre contient le même nombre d’observations.
Notons que MWR et GWR ne modélisent que l’hétérogénéité spatiale
et non l’autocorrélation.

7.8 Tests de spécification, comparaison de modèles

7.8.1 Autocorrélation des résidus

Outre le test de Moran des résidus d’une régression OLS ou WLS, il
existe d’autres tests comme les tests du multiplicateur de Lagrange donnés
par les formules

LM(err) = {e′We/σ2}2/tr(W ′W +W 2)

dans le cas du modèle SEM en alternative et

LM(lag) = {e′WY/σ2}2/{(WXb)′MWXb/σ2 + tr(W ′W +W 2)},
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dans le cas du modèle LAG en alternative, où e désignent les résidus et
W une matrice de voisinage. Sous l’hypothèse d’absence d’autocorrélation,
LM(err) et LM(lag) suivent asymptotiquement une loi de χ2(1). On peut
aussi tester l’hypothèse H0 : λ = ρ = 0 dans le modèle complet par le test
du multiplicateur de Lagrange et la statistique obtenue SARMA converge
alors vers un χ2(2).
IL existe des versions dites robustes de ces tests. La statistique RLM(lag)
permet de tester le modèle SEM en hypothèse nulle contre le modèle complet
SAC en alternative. De même, la statistique RLM(err) permet de tester le
modèle LAG en hypothèse nulle contre le modèle complet SAC en alterna-
tive.
Voyons comment utiliser les tests de Lagrange pour orienter le choix de
modèle. Si par exemple, les deux tests LM(err) et LM(lag) sont significatifs,
mais lorsqu’on regarde les versions robustes, c’est le test RLM(lag) qui est
le plus significatif : on se dirige alors vers un modèle LAG.

7.8.2 Tests sur les coefficients

Notons qu’il existe dans ces modèles une expression de la matrice de
variance-covariance asymptotique des estimateurs des coefficients. On va
s’intéresser aux tests d’ hypothèses de la forme H0 : g(θ) = 0, où θ est le
vecteur des paramètres. Par exemple θ = (ρ, β, σ2) dans le modèle LAG et
si l’on s’intéresse à l’hypothèse H0 : ρ = 0, cela revient à tester le modèle
OLS contre le modèle LAG.
Les trois types de tests classiques peuvent être utilisés pour cela : le test de
Wald Wa (ou asymptotic t-test), le test du rapport de vraisemblance LR et
le test du score ou de Lagrange LM . Si g est une contrainte de dimension q,
les trois statistiques de test correspondantes suivent asymptotiquement une
loi de χ2(q) et les trois tests sont asymptotiquement équivalents. Notons que
Wa et LR nécéssitent l’estimation du modèle non contraint alors que LM
n’est fonction que de l’estimation du modèle contraint (souvent OLS).

7.8.3 Stratégies de choix de modèle

Une fois un modèle spatial LAG adopté, le test du multiplicateur de La-
grange LM(err)∗ permet de tester s’il est nécéssaire d’introduire également
une autocorrélation spatiale des erreurs. De même, une fois un modèle spa-
tial SEM adopté, le test du multiplicateur de Lagrange LM(lag)∗ permet
de tester s’il est nécéssaire d’introduire également une variable endogène
décalée. Notons qu’on ne peut utiliser un test du rapport de vraisemblance
que si les modèles sont emboités.
Pour comparer des modèles non emboités, on peut aussi minimiser les critères
usuels d’Akaiké et de Schwartz qui s’expriment en fonction de la log-vraisemblance
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AIC = −2 log(L) + 2k,BIC = −2 log(L) + log(nk),

où k est le nombre de paramètres.
Notons bien qu’il n’est pas légitime de faire un test de Moran pour tester
l’autocorrélation spatiale des résidus d’une régression spatiale, mais on peut
à titre descriptif faire un Moran plot de ces résidus. Pour finir, notons qu’une
matrice de voisinage mal spécifiée peut engendrer de l’autocorrélation spa-
tiale dans les résidus sans que pour autant le type de modèle soit à remettre
en cause.

7.9 Prédiction dans les modèles spatiaux

7.9.1 Dans les modèles de la famille SAR

Dans un modèle non spatial ajusté par WLS, on calcule la prédiction de
la variable Y avec la formule ŷ = xβ̂, que x soit un des points observés dans
l’échantillon ou pas et cette prédiction correspond à la meilleure prédiction
linéaire sans biais (BLUP).
Dans un modèle spatial, à cause de la présence d’autocorrélation spatiale, la
meilleure prédiction linéaire sans biais ne se calcule plus ainsi et doit prendre
en compte les autocorrélations (en particulier elle nécéssite le calcul des
matrices de poids croisées correspondant à l’ensemble des points constitué
des points de l’échantillon et des points où l’on veut prédire). Il faut donc
se garder d’appliquer la formule ŷ = xβ̂.
Pour un point de l’échantillon, Bivand (2002) utilise la formule suivante

Ŷ = Xβ̂ + ρ̂WY,

formule qui n’est qu’une approximation du BLUP.

7.9.2 Dans les modèles géostatistiques : le Krigeage

Dans le modèle géostatistique classique, le modèle Y = µ+ ε devient le
modèle “signal plus bruit” suivant. Le signal est un champ Xs qui est l’objet
d’intérêt sur lequel on veut faire de l’inférence et il présente lui-même une
tendance µ = m(s) = E(Xs) et une structure d’autocovariance donnée par
la fonction σ(s, t) = Cov(Xs, Xt). Il est observé avec un bruit additif ε en
un nombre fini de localisations si, i = 1, · · · , n, d’où

Ysi = Xsi + εi,

où εi sont des réalisation d’un bruit i.i.d. de moyenne nulle et de variance
σ2.
L’objectif est de

– estimer la tendance m(s) = E(Xs),
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– prédire les valeurs deXs en une localisation s qui n’est pas nécéssairement
parmi celles observées ou plus généralement prédire

∫
Aw(s)Xsds.

– calculer des erreurs de prédiction
La méthode de Krigeage consiste à utiliser comme prédicteur celui qui
possède la propriété d’optimalité suivante : il doit minimiser l’erreur qua-
dratique de prédiction parmi les prédicteurs linéaires sans biais. On l’appelle
le BLUP pour “Best Linear Unbiased Predictor”. On suppose dans un pre-
mier temps que la structure de covariance σ est connue. En pratique il faut
l’estimer au préalable. L’optimalité se traduit par les conditions suivantes.
Ce prédicteur de Xs est une combinaison linéaire Y ∗ of Yi = Ysi satisfaisant

– Y ∗ est sans biais E(Y ∗) = E(Xs)
– Y ∗ a la plus petite erreur de prédiction minE(Y ∗ − Xs)

2 parmi les
prédicteurs linéaires sans biais.

Introduisons les notations suivantes
– Σ est la matrice de terme général σ(si, sj),
– Σs est le vecteur σ(si, s)
– Y est le vecteur (Y1, · · · , Yn)′.

On utilise le résultat suivant : Σ est inversible dès que les localisations si sont
distinctes et que la fonction d’autocovariance est strictement défini positive.

Krigeage simple - Cas du modèle sans bruit

Considérons d’abord le cas où il n’y a pas de bruit ε = 0. De plus
supposons d’abord que la tendance est constante et connue m(s) = µ et on
parle alors de Krigeage simple ; on peut alors supposer la moyenne nulle. On
montre alors que le BLUP est donné par

Y ∗s =

n∑
i=1

λi(s)Yi

avec
λ∗(s) = Σ−1Σs

L’erreur de prédiction est alors égale à

E(Y ∗s −Xs)
2 = σ(s, s)− λ∗(s)′Σs.

En effet

E
(
Y ∗s −Xs

)2
= V ar

(
Y ∗s −Xs

)
= V ar

( n∑
i=1

λi(s)Yi −Xs

)
(7.6)

=
n∑
i=1

n∑
j=1

λi(s)λj(s)σ(si, sj)− 2
n∑
i=1

λi(s)σ(si, s) + σ(s, s).

∂

∂λi(s)
E
(
Y ∗s −Xs

)2
= 2

n∑
j=1

λj(s)σ(si, sj)− 2σ(si, s) = 0,
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puisque
∂2

∂λi(s)∂λj(s)
E
(
Y ∗s −Xs

)2
= 2σ(si, sj),

et donc la matrice hessienne est égale à 2Σ et donc définie positive ce qui
assure que E

(
Z∗s − Ys

)2
est convexe. Donc

n∑
j=1

λ∗j (s)σ(si, sj) = σ(si, s) i = 1, . . . , n

ou en notations matricielle

Σλ∗(s) = Σs. (7.7)

λ∗(s) = Σ−1Σs.

L’erreur de prédiction se calcule alors par

E
(
Y ∗s −Xs

)2
=

n∑
i=1

n∑
j=1

λ∗i (s)λ
∗
j (s)σ(si, sj)− 2

n∑
i=1

λ∗i (s)σ(si, s) + σ(s, s)

= λ∗(s)′Σλ∗(s)− 2λ∗(s)Σs + σ(s, s)

= λ∗(s)′Σs − 2λ∗(s)′Σs + σ(s, s)

= σ(s, s)− λ∗(s)′Σs.

Ce prédicteur interpole les valeurs du champ dans le sens suivant Y ∗i =
Yi. Cela semble logique au vu du fait que le bruit est nul. Notons que ce
prédicteur est une moyenne pondérée des valeurs observées. Le vecteur Σs

a pour effet que le point si contribue d’autant plus à la prédiction de Xs

que si est proche de s (proche impliquant plus corrélé). La matrice Σ−1 a
pour effet que les points isolés sont pondérés plus fortement que les points
agrégés en groupes. On remarque que λ∗(s) = Σ−1Σs doit être calculé pour
chaque localisation s pour laquelle on souhaite une prédiction mais dans
la formule de prédiction Y ∗s = λ∗(s)′Y = Σ′sΣ

−1Z, le produit Σ−1Z est
commun à toutes les prédictions et n’a besoin d’être calculé qu’une fois.
La figure suivante montre un exemple de krigeage en dimension un avec un
variogramme exponentiel et un modèle non bruité.
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Krigeage simple - Cas du modèle bruité

Des argumens similaires aux précédents montrent que la solution est données
par les mêmes formules mais en remplaçant σ(si, sj) par σ(si, sj)+σ2δ0(si−
sj), et en laissant σ(si, s) inchangé. Si σ2 est non nul, ce prédicteur n’in-
terpole plus les valeurs observées ce qui est intuitivement logique. La figure
suivante montre un exemple de krigeage en dimension un avec un vario-
gramme gausien et un modèle bruité.
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Krigeage ordinaire - Cas du modèle non bruité

On parle de Krigeage ordinaire loesque la tendance m(s) = µ est tou-
jours constante mais inconnue. Le champ Xs est supposé intrinsèquement
stationnaire de vartiogramme γ.
Le prédicteur BLUP est alors donné par

Y ∗s =

n∑
i=1

λi(s)Yi

avec les coefficients λ∗(s) solution du système linéaire∑
j

λj(s)σ(si − sj) + µ = σ(s, si) (7.8)

∑
i

λi(s) = 1

pour i = 1, · · ·n et l = 0, · · ·L.
L’erreur de prédiction est égale à

E(Y ∗s −Xs)
2 = σ(s, s)−

∑
i

λi(s)σ(si, s)− µ.

On peut aussi écrire ce système en fonction du variogramme (au lieu de la
covariance) ∑

j

λj(s)γ(si − sj) + µ = γ(s, si) (7.9)

∑
i

λi(s) = 1

et l’erreur de prédiction est alors

E(Y ∗s −Xs)
2 =

∑
i

λi(s)γ(si, 0) + µ.

En effet

V ar
(
Y ∗s −Xs

)
= V ar

( n∑
i=1

λi(s)Yi −Xs

)
=

n∑
i=1

n∑
j=1

λi(s)λj(s)σ(si, sj)− 2

n∑
i=1

λi(s)σ(si, s) + σ(s, s)

=
n∑
i=1

n∑
j=1

λi(s)λj(s)
(σ(si, si) + σ(sj , sj)− γ(si, sj)

2

)
−2

n∑
i=1

λi(s)
(σ(si, si) + σ(s, s)− γ(si, s)

2

)
+ σ(s, s)
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V ar
(
Y ∗s −Xs

)
=

n∑
i=1

n∑
j=1

λi(s)λj(s)

[
σ(si, si) + σ(sj , sj)

2
− 1

2

n∑
i=1

n∑
j=1

λi(s)λj(s)γ(si, sj)

]

−
n∑
i=1

λi(s)σ(si, si) +

n∑
i=1

λi(s)γ(si, s) +
(

1−
n∑
i=1

λi(s)
)
σ(s, s)

= −1

2

n∑
i=1

n∑
j=1

λi(s)λj(s)γ(si, sj) +
n∑
i=1

λi(s)γ(si, s).

Ce modèle peut être généralisé au cas du Krigeage dit universel lorsque la
tendance m(s) n’est plus constante mais s’écrit comme combinaison linéaire
de polynômes des variables spatiales à coefficients inconnus et lorsque la
structure de covariance est intrinsèquement stationnaire d’ordre r.

7.10 Modèles de régression pour semis de points

La première étape de la modélisation d’un semis de points est le test de
CSR. En effet, si celui-ci n’est pas significatif, on pourra adopter un modèle
Poissonnien facile à manipuler alors que dans le cas contraire, il faudra se
tourner vers des modèles avec interaction. Dans ce dernier cas, le choix d’un
modèle spécifique se fait en utilisant quelques outils exploratoires comme
la fonction de corrélation des paires. La modélisation de l’intensité prends
toujours la forme suivante

λ(x) = exp(

k∑
j=1

θkZk(x)),

où Zk sont des facteurs explicatifs et θk les paramètres correspondants.
Il reste ensuite à estimer les paramètres du modèle : ceux de l’intensité et
ceux de la structure d’interaction. La méthode du maximum de vraisem-
blance est difficile à appliquer sauf dans quelques modèles particuliers en
raison de la présence de la constante de normalisation difficile à évaluer.
Une approche possible, similaire à la classique méthode des moments est
de choisir une caractéristique du semis comme par exemple la fonction K
de Ripley et de faire des moindres carrés entre la fonction théorique K
qui dépends des paramètres et la fonction empirique correspondante pour
déterminer les meilleurs paramètres. Une autre approche consiste à approxi-
mer la constante de normalisation par des méthodes de Monte Carlo. Enfin,
une autre possibilité est d’utiliser le pseudo-maximum de vraisemblance qui
consiste à remplacer la vraisemblance par le produit des densités condition-
nelles.
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La dernière étape consiste enfin en la validation du modèle et cela se fait
généralement par la méthode des enveloppes basée sur des simulations. Cette
méthode consiste d’abord à simuler un grand nombre M de réalisations du
modèle ajusté et à déterminer si la fonction K de Ripley (version inho-
mogène) estimée tombe dans l’enveloppe des fonctions K associées aux M
simulations du modèle supposé. Dans la pratique on utilise souvent M = 19
ou 99. Si pour une valeur de la distance r, dans l’étendue des valeurs ob-
servées dans la fenêtre, la courbe K observée sort de l’enveloppe, le modèle
est rejeté. Le pseudo niveau de signification empirique associé à ce test est
de 1

M+1 ce qui conduit à 0.05 pour M = 10 et à 0.01 pour M = 99.
Remerciements. Ce document, qui est la trame d’un ouvrage, a été effectué
en collaboration avec Thibault Laurent et Anne Ruiz-Gazen de l’université
Toulouse 1 Capitole, Toulouse School of Economics.
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