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INFERENCIA BASADA EN EL DISEÑO/MODELO

ELEMENTO BAJO UN MODELO BAJO EL DISEÑO

Población y ∼ Pθ U = {1, . . . ,N},
Y = {y1, . . . , yN}

Muestra y = (y1, . . . , yn) s = (i1, . . . , in) ∈ Sπ,

yi i.i.d. as y y = (yi1 , . . . , yin)

Distr. Prob. Pθ(y) Pπ(s)

Parámetro θ (e.g., θ = EPθ
(y)) θ = h(y1, . . . , yN)

Estimador θ̂(y) θ̂(s)

Diseño muestral: (Sπ,Pπ), Sπ ⊂ P(U) conjunto de muestras, Pπ
distribución de probabilidad sobre Sπ donde Pπ(s) > 0, ∀s ∈ Sπ, y
todas las unidades j ∈ U están contenidas en alguna muestra
s ∈ Sπ. 3
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INFERENCIA BASADA EN EL DISEÑO

• U población finita de tamaño N.

• y1, . . . , yN mediciones para las unidades poblacionales (fijas).

• Parámetro objetivo:

δ = h(y1, . . . , yN).

• Ejemplo: media poblacional

Ȳ =
1

N

N∑
j=1

yj .

• s muestra aleatoria de tamaño n obtenida de una población
U bajo un diseño dado.

• r = U − s no-muestra (tamaño N − n).

4
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ESTIMADOR DE HORVITZ-THOMPSON

• πj probabilidad de inclusión de la unidad j en la muestra.

• dj = 1/πj peso muestral de la unidad j .

• Horvitz-Thompson (HT) estimador de la media:

ˆ̄Y =
1

N

∑
j∈s

yj
πj

=
1

N

∑
j∈s

djyj .

• Varianza bajo el diseño:

Vπ( ˆ̄Y ) =
1

N2

N∑
j=1

N∑
k=1

(πj ,k − πjπk)
yj
πj

yk
πk
,

πj ,k probabilidad de inclusión conjunta de las unidades j y k .

X Hansen, Hurwitz & Madow (1953) 5
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VARIANZA BAJO EL DISEÑO

• Estimador insesgado de la varianza bajo el diseño:

V̂π( ˆ̄Y ) =
1

N2

∑
j∈s

∑
k∈s

πj ,k − πjπk
πj ,k

yj
πj

yk
πk
,

X Särndal, Swensson & Wretman (1992), ecuación (5.8.5)

• Usando la aproximación πj ,k ∼= πjπk , j 6= k,

V̂π( ˆ̄Y ) ∼=
1

N2

∑
j∈s

(
1− πj
π2j

)
y2j =

∑
j∈s

dj(dj − 1)y2j .

6
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EJEMPLO: INDICADORES DE POBREZA FGT

• Ej medida del poder adquisitivo para individuo j (ej. ingreso
neto anual por unidad de consumo).

• z umbral de pobreza: En páıses de la UE,

z = 0.6×Mediana(Ej).

• Familia de indicadores de pobreza FGT:

Fα =
1

N

N∑
j=1

(
z − Ej

z

)α
I (Ej < z), α ≥ 0.

• α = 0⇒ Tasa/Incidencia de Pobreza

• α = 1⇒ Brecha de Pobreza

X Foster, Greer & Thornbecke (1984), Econometrica 7
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ESTIMADOR DE HORVITZ-THOMPSON

• Indicador de pobreza:

Fα =
1

N

N∑
j=1

Fαj , Fαj =

(
z − Ej

z

)α
I (Ej < z).

• Estimador HT de Fα:

F̂α =
1

N

∑
j∈s

djFαj .

• Varianza estimada:

V̂π(F̂α) =
1

N2

∑
j∈s

dj(dj − 1)F 2
αj .

8
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AJUSTES DEL ESTIMADOR DE HT

• gj factor de ajuste del peso muestral dj , j ∈ s.

• wj = djgj peso ajustado, j ∈ s.

• Estimador con pesos ajustados:

ˆ̄Y A =
1

N

∑
j∈s

wjyj .

9
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EJEMPLO 1: ESTIMADOR DE RAZÓN

• Estimador HT del tamaño poblacional:

N̂ =
∑
j∈s

dj .

• Factor de ajuste constante:

gj =
N

N̂
, ∀j ∈ s.

• Estimador de razón:

ˆ̄Y R =
Ŷ

N̂
, Ŷ =

∑
j∈s

djyj .

10
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EJEMPLO 2: EST. RAZÓN CON VARIABLE AUX.

• X =
∑N

j=1 xi total conocido de variable auxiliar x con valores
poblacionales:

x1, . . . , xN .

• Estimador HT de X :

X̂ =
∑
j∈s

djxj .

• Factor de ajuste:

gj =
X

X̂
, ∀j ∈ s.

• Estimador de razón con variable auxiliar X :

ˆ̄Y RX = ˆ̄Y
X

X̂
.

• El estimador de razón anterior se obtiene tomando xj = 1,
∀j ∈ U.

11
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EJEMPLO 3: CALIBRACIÓN

• p variables auxiliares con totales poblacionales conocidos Xk ,
k = 1, . . . , p.

• Idea: Encontrar pesos wj , j ∈ s, que minimicen la distancia
X 2

ḿın
∑
j∈s

(
wj − dj

)2
dj

s.t.
∑
j∈s

wjxjk = Xk , k = 1, . . . , p.

• Solución: wj = djgj , donde gj = 1 + x′j T̂
−1(X− X̂),

xj = (xj1, . . . , xjp)′, X = (X1, . . . ,Xp)′, T̂ =
∑
j∈s

djxjx
′
j .

X Deville & Särndal (1992), JASA 12
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EJEMPLO 3: CALIBRACIÓN

• Modelo de regresión lineal:

yj = x′jβ + ej , E (ej) = 0, E (e2j ) = σ2e , j = 1, . . . ,N.

• Estimador de coeficientes de la regresión:

B̂ = T̂−1
∑
j∈s

djxjyj

• Estimador de regresión generalizada (GREG):

Ŷ A = Ŷ + (X− X̂)′B̂.

• ¡Coincide con el estimador de calibración!

X Deville & Särndal (1992), JASA 13
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ESTIMACIÓN EN DOMINIO/ÁREA

• U particionada en D dominios U1, . . . ,UD de tamaños
N1, . . . ,ND .

• sd muestra de tamaño nd obtenida de Ud .

• Tamaño muestral total n =
∑D

d=1 nd .

• rd = Ud − sd complemento de la muestra, de tamaño Nd − nd .

Ejemplo: Encuesta de condiciones de vida en 2006

Tamaño muestral total: n = 34, 389 personas.
Resumen de tamaños muestrales por provincia×género:

(Barcelona,M) (Córdoba,M) (Tarragona,V) (Soria,M)
1483 230 129 17

14
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ESTIMADORES TRADICIONALES DIRECTOS

• Parámetro objetivo: δd = hd({yj ; j ∈ Ud}).
• Ejemplo: media del dominio d-ésimo

Ȳd =
1

Nd

∑
j∈Ud

yj .

• Estimador directo: Usa solo los datos del área espećıfica.
• Ejemplo: Estimador HT de Ȳd ,

ˆ̄Y DIR
d =

1

Nd

∑
j∈sd

djyj .

• Estimador de la varianza: Usando πj ,k ∼= πjπk , j 6= k ,

V̂π( ˆ̄Y DIR
d ) =

1

Nd

∑
j∈sd

dj(dj − 1)y2j .

15
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ESTIMADORES DIRECTOS

INDICADORES OBJETIVO:

• Aditivos en las observaciones individuales.

REQUERIMIENTOS de DATOS:

• Pesos muestrales dj , j ∈ sd para las unidades muestreadas en
el área.

• Para el estimador de HT de la media y para el estimador de
Hájek del total, el tamaño poblacional del dominio Nd .

16
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ESTIMADORES DIRECTOS

VENTAJAS:

• Sin supuestos de modelo (no paramétrico).
• Se pueden usar pesos muestrales ⇒ Aproximadamente

insesgados y consistentes bajo el diseño cuando nd ↑.
• Aditividad (propiedad “benchmarking”):

D∑
d=1

Ŷ DIR
d = Ŷ DIR .

DESVENTAJAS:

• Vπ( ˆ̄Y DIR
d ) ↑ cuando nd ↓. Muy ineficiente para dominios

pequeños.
• No se pueden calcular para áreas no muestreadas (nd = 0).

17
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ĹIMITES DE DESAGREGACIÓN

RECOMENDACIONES:

(i) Usar estimadores directos a nivel nacional y para
desagregaciones con CV estimado por debajo de un ĺımite
especificado para todas las áreas.

(ii) Para mayores desagregaciones, usar estimadores indirectos en
las áreas con sesgo absoluto relativo por debajo de un ĺımite
dado.

(iii) Para áreas donde los estimadores indirectos exceden el ĺımite
de sesgo, no obtener estimaciones. Siempre es posible
modificar el reparto del tamaño muestral total entre las áreas
para tener un número ḿınimo de observaciones en cada área.

18
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ESTIMADORES INDIRECTOS

• Estimador indirecto: Estimador que comparte información
con otras áreas (“borrows strength”) estableciendo
relaciones de homogeneidad entre ellas (modelo con
parámetros comunes).

19



INTRODUCCIÓN EST. INDIRECTOS MOD. NIVEL ÁREA M. UNIDAD MÉTODO EB BINARIOS

PRIMERA APLICACIÓN DE REGRESIÓN SINTÉTICA

Encuesta de Radio 1945:

• Objetivo: estimar la mediana del número de emisoras de radio
que son escuchadas durante el d́ıa en 500 condados de EE.UU.

• Encuesta por correo: En cada uno de los 500 condados, se
muestrearon 1000 familias y se les envió un cuestionario por
correo. Tasa de respuesta solo 20 % y cobertura incompleta.

• xd num. mediano de emisoras escuchadas durante el d́ıa
(encuesta por correo) en el condado d-ésimo, para
d = 1, . . . , 500. Sesgado debido a la falta de respuesta y
cobertura incompleta.

• Encuesta con entrevistas personales en 85 condados: muestra
probabiĺıstica de 85 condados, éstos son submuestreados de
forma intensiva, realizando entrevistas personales.

X Hansen, Hurwitz & Madow, 1953, p. 483; X Rao & Molina, 2015

20
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PRIMERA APLICACIÓN DE REGRESIÓN SINTÉTICA

Encuesta de Radio 1945:

• yd num. mediano de emisoras que escuchadas durante el d́ıa
(entrevista personal) en el condado d , d = 1, . . . , 85. Se
consideran como las medianas verdaderas.

• corr(y , x) = 0.70

• Regresión Lineal:

yd = β0 + β1 xd + ed , d = 1, . . . , 85.

• Estimadores indirectos para los 500-85 condados restantes:

ŷSYNd = 0.52 + 0.74xd (Estimador sintético de regresión)

• No tiene en cuenta la posible heterogeneidad entre condados.

21
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ESTIMADORES SINTÉTICOS

Definición:

A partir de una encuesta, se obtiene un estimador insesgado para
un área grande; cuando esta estimación se utiliza para calcular
estimaciones para subáreas bajo el supuesto de que las áreas
pequeñas tienen las mismas caracteŕısticas que el área grande,
identificamos estas estimaciones como estimaciones sintéticas.

X González (1973)

Ejemplo SIMPLE:

• Objetivo: Ȳd media del dominio d .
• Se asume: Ȳd = Ȳ .
• Estimador sintético de Ȳd :

ˆ̄Y SYNT
d = ˆ̄Y .

22
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ESTIM. POST-ESTRATIFICADO SINTÉTICO

• J post-estratos (j = 1, . . . , J) que se cruzan con los dominios.

• Ndj tamaño poblacional del cruce entre el dominio d y el
post-estrato j .

• Total del dominio d :

Yd =
J∑

j=1

Ndj Ȳdj

• Suposición (modelo
impĺıcito):

Ȳdj = Ȳ+j = Y+j/N+j , ∀d , j

stratum 1 stratum 2 stratum 3 stratum 4

area i

Ni=Ni1+Ni2+Ni3+Ni4

Ni1 Ni2 Ni3 Ni4

23
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ESTIMADOR POST-ESTRATIFICADO
SINTÉTICO

• Estimador post-estratificado sintético:

Ŷ SYN
d =

J∑
j=1

Ndj
ˆ̄Y R
+j ,

ˆ̄Y R
+j = Ŷ+j/N̂+j .

• Ŷ+j , N̂+j estimadores directos fiables de Y+j , N+j .
• Se necesita homogeneidad dentro de cada post-estrato.
• Caso especial: Cuando y ∈ {0, 1}, la proporción del dominio
Pd es Yd/Nd , donde Nd =

∑J
j=1Ndj .

• Estimador post-estratificado sintético de Pd :

P̂SYN
d =

1

Nd

J∑
j=1

Ndj P̂
R
+j

24
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ECM DEL ESTIMADOR SINTÉTICO

• El estimador post-estratificado sintético Ŷ SYN
d depende de los

estimadores directos Ŷ+j/N̂+j para el post-estrato j . Por
tanto, la varianza bajo el diseño de los estimadores sintéticos
es pequeña en relación a la de los estimadores directos para
un dominio pequeño.

• Pero los estimadores sintéticos dependen en gran medida de
las hipótesis de homogenidad y pueden tener un sesgo grande
cuando no sean ciertas.

• Por tanto, como medida de error, conviene dar el error
cuadrático medio (ECM), que incluye sesgo y varianza.

25
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ESTIMADOR del ECM

• ECM aproximado:

ECMd(Ŷ SYN
d ) ≈ Ed(Ŷ SYN

d − Ŷ DIR
d )2 − V̂d(Ŷ DIR

d )

• ECM estimado:

ˆECMd(Ŷ SYN
d ) = (Ŷ SYN

d − Ŷ DIR
d )2 − V̂d(Ŷ DIR

d ).

• ˆECMd(Ŷ SYN
d ) es aproximadamente insesgado pero inestable.

• Promedio sobre dominios: (X González & Wakesberg, 1973)

ˆECMa( ˆ̄Y SYN
d ) =

1

D

D∑
`=1

1

N2
`

(Ŷ SYN
` −Ŷ DIR

` )2− 1

D

D∑
`=1

1

N2
`

V̂d(Ŷ DIR
` )

• Limitación: ˆECMa( ˆ̄Y SYN
d ) es estable pero es igual para todas

las áreas.

26
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ESTIMADOR SINTÉTICO

INDICADORES OBJETIVO:

• Para estimador sintético de regresión, indicadores generales.
Para post-estratificados sintéticos, parámetros aditivos.

REQUERIMIENTOS DE DATOS:

• Para el estimador sintético de regresión, valores agregados de
p variables auxiliares a nivel de dominio.

• Para estimadores sintéticos post-estratificados, indicador de
post-estrato en la encuesta y tamaños poblacionales de cruces
entre post-estratos y dominios.
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ESTIMADOR SINTÉTICO

VENTAJAS:

• Pueden tener una varianza muy pequeña.

• Permiten estimar en áreas no muestreadas.

28
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ESTIMADORES SINTÉTICOS

DESVENTAJAS:

• No tienen en cuenta la posible heterogeneidad entre áreas; por
tanto, pueden estar seriamente sesgados bajo el diseño.
• El modelo debe verificarse cuidadosamente (por ejemplo,

mediante gráficos de residuos y contrastes de significatividad
de la varianza de los efectos aleatorios).
• Si se conoce el modelo, ¡no se usan los datos de la variable de

interés obtenidos de la encuesta!
• No tienden al estimador directo al aumentar el tamaño

muestral del dominio.
• No existen estimadores del ECM estables y distintos para cada

área.
• Es necesario realizar ajustes para que cumplan la propiedad

“benchmarking”.

29
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ESTIMADORES COMPUESTOS

Para equilibrar el sesgo de un estimador sintético y la inestabilidad
de un estimador directo para un dominio, tomar:

Ŷ C
d = φd Ŷd + (1− φd)Ŷ SYN

d , 0 ≤ φd ≤ 1.

• Estimador dependiente de tamaño muestral (SSD): Para
un δ > 0 dado,

φd =

{
1, si N̂d ≥ δNd ;

N̂d/(δNd), si N̂d < δNd .

X Drew, Singh & Choudhry (1982), SM 30
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ESTIMADOR DEPENDIENTE DEL TAMAÑO
MUESTRAL (SSD)

• Bajo muestreo aleatorio simple (MAS) en la población:

N̂d =
∑
j∈sd

dj = Nnd/n

• N̂d insesgado: Nd = Eπ(N̂d) = NEπ(nd)/n. Entonces,

N̂d ≥ δNd ⇔ Nnd/n ≥ δNEπ(nd)/n⇔ nd ≥ δEπ(nd).

• Peso del estimador SSD bajo MAS:

φd =

{
1 si nd ≥ δEd(nd);

nd/{δEd(nd)} si nd < δEd(nd)

31
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ESTIMADOR DEPENDIENTE DEL TAMAÑO
MUESTRAL (SSD)

• Encuesta de Población Activa canadiense: Se producen
estimaciones por divisiones censales con δ = 2/3. Para la
mayoŕıa de las áreas, 1− φd = 0; para otras áreas el peso
asignado a Ŷ SYN

d estaba en torno a 0.1 pero nunca fue mayor
que 0.2.

• Se usa el mismo peso φd para todas las variables y sin
importar las diferencias con respecto a la homogeneidad entre
áreas.

32
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ESTIMADOR COMPUESTO ÓPTIMO

• Encontrar φd que minimice ECMd(Ŷ C
d ) ⇒ φ∗d

• Peso óptimo depende de los verdaderos ECMs de Ŷ SYN
d y Ŷd .

• Peso óptimo estimado:

φ̂∗d = ECMd(Ŷ SYN
d )/(Ŷ SYN

d − Ŷd)2

• Limitación: φ̂∗d es inestable.
• Peso óptimo estimado común (promedio sobre áreas):

φ̂∗ =
D∑
`=1

ECMd( ˆ̄Y SYN
` )/

D∑
`=1

( ˆ̄Y SYN
` − ˆ̄Y`)

2

= 1−

{
D∑
`=1

V̂d( ˆ̄Y`)/
D∑
`=1

( ˆ̄Y SYN
` − ˆ̄Y`)

2

}
• φ̂∗ es estable pero es igual para todas las áreas.
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BENCHMARKING

• Normalmente se dispone de un estimador directo fiable para
una región A que contiene varias áreas, Ŷ DIR

A .

• Los estimadores indirectos de los totales de las áreas Yd

contenidas en dicha región no tienen por qué sumar Ŷ DIR
A .

• Ajuste de razón: Ỹd estimador indirecto de Yd con∑
d∈A Ỹd 6= Ŷ DIR

A . Entonces, se toma el estimador

Ỹ ∗d = Ỹd
Ŷ DIR
A∑

d∈A
Ỹd

⇒
∑
d∈A

Ỹ ∗d = Ŷ DIR
A

34
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ESTIMADORES SSD

INDICADORES OBJETIVO:

• Parámetros aditivos.

REQUERIMIENTOS DE DATOS:

• Los mismos que los estimadores directo y sintético que se
utilicen.
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ESTIMADORES SSD

VENTAJAS:

• Tenderán a tener menor varianza bajo el diseño que el
estimador directo y menor sesgo que el sintético.

DESVENTAJAS:

• Si el tamaño muestral del dominio (incluso siendo pequeño) no es
inferior al tamaño esperado, no se comparte información.

• El peso del estimador sintético no depende de lo bien explicada que
esté la variable de interés por las variables auxiliares.

• No se pueden calcular para dominios no muestreados.

• No se dispone de estimadores del ECM bajo el diseño estables y
distintos para cada área.

• Necesitan reajuste para satisfacer la propiedad “benchmarking”.
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MODELO FAY-HERRIOT

(i) Modelo que enlaza las áreas:

δd = x′dβ + ud , d = 1, . . . ,D

ud
iid∼ (0, σ2u), σ2u desconocido

(ii) Modelo del muestreo:

δ̂DIR
d = δd + ed , d = 1, . . . ,D

ed
ind∼ (0, ψd), ψd = Vπ(δ̂DIR

d |δd) conocido ∀d
ud y ed independientes

(iii) Modelo combinado: Modelo lineal mixto

δ̂DIR
d = x′dβ + ud + ed , d = 1, . . . ,D

X Fay & Herriot (1979), JASA
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BLUP BAJO EL MODELO FAY-HERRIOT

Best linear unbiased predictor (BLUP)

Bajo el modelo combinado (iii) con δd = x′dβ + ud , el estimador

lineal δ̃d = b +α1δ̂
DIR
1 + · · ·+αD δ̂

DIR
D que es solución al problema:

min(α1,...,αD) ECM(δ̃d) = E (δ̃d − δd)2

s.t. E (δ̃d − δd) = 0

viene dado por
δ̃BLUPd = x′d β̃ + ũd ,

donde

β̃ = β̃(σ2u) =

(
D∑

d=1

γdxdx′d

)−1 D∑
d=1

γdxd δ̂
DIR
d ,

ũd = ũd(σ2u) = γd(δ̂DIR
d − x′d β̃), γd =

σ2u
σ2u + ψd
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BLUP BAJO EL MODELO FAY-HERRIOT

Demostración: Se demuestra un resultado más general. Se
expresa el modelo (iii) en notación matricial

y = Xβ + u + e,

donde

y =

 δ̂DIR
1
...

δ̂DIR
D

 , X =

 x′1
...

x′D

 , u =

 u1
...
uD

 , e =

 e1
...
eD

 .

Matrices de covarianzas: V (u) = σ2uID , V (e) = diag(ψd).
Demostramos que el BLUP de un efectos mixto

µ = `′β + m′u,

para vectores ` and m dados de dimensiones p × 1 y D × 1, es

µ̃ = `′β̃ + m′ũ, ũ = (ũ1, . . . , ũD)′.
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BLUP BAJO EL MODELO FAY-HERRIOT

• Predictor Lineal de µ = `′β + m′u:

µ̃ = α′y + b,

para un vector dado α = (α1, . . . , αD)′ y escalar b.
• Error de predicción:

µ̃−µ = α′y+b−`′β−m′u = α′Xβ+α′u+α′e+b−`′β−m′u.

• µ̃ insesgado bajo el modelo para µ si y solo si E (µ̃−µ) = 0.
• Tomando esperanza del error de predicción,

E (µ̃− µ) = (α′X− `′)β + b = 0 ∀β ⇔ α′X = `′, b = 0.

• Si µ̃ es insesgado para µ, entonces

ECM(µ̃) = V (µ̃−µ) = V (α′y−m′u) = α′Vα+σ2um′m−2σ2uα
′m,

donde V = V (y) = σ2uID + diag(ψd).
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BLUP BAJO EL MODELO FAY-HERRIOT

• Problema de minimización:

minα ECM(µ̃) = α′Vα+ σ2um′m− 2σ2uα
′m

s.t. α′X = `′

• Mediante el método de multiplicadores de Lagrange, se
obtiene:

α′ = `′(X′V−1X)−1X′V−1+σ2um′V−1
[
ID − X(X′V−1X)−1X′V−1

]
.

• Entonces, el BLUP de µ es

µ̃BLUP = α′y = `′β̃ + m′σ2uV−1(y − Xβ̃)︸ ︷︷ ︸
ũ

= `′β̃ + m′ũ.

• Para ` = xd and m = (0′d−1, 1, 0
′
D−d)′, obtenemos

δ̃BLUPd = x′d β̃ + ũd .
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BUENA PROPIEDAD DEL BLUP

• El BLUP se puede expresar como

δ̃BLUPd = γd δ̂
DIR
d + (1− γd)x′d β̃, γd =

σ2u
σ2u + ψd

.

• Composición del estimador directo δ̂DIR
d y el estimador

“sintético de regresión” x′d β̃.

• Da mayor peso a δ̂DIR
d cuando la varianza muestral ψd es

pequeña small (δ̂DIR
d fiable).

• Da más peso al estimador sintético x′d β̃ cuando ψd es

grande (δ̂DIR
d no fiable) o σ2u pequeño (x′d β̃ fiable).
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BLUP EMṔIRICO (EBLUP)

• δ̃BLUPd depende de σ2u a través de β̃ y γd :

δ̃BLUPd = δ̃BLUPd (σ2u)

• BLUP emṕırico (EBLUP) de δd : σ̂2u estimador de σ2u,

δ̂EBLUPd = δ̃BLUPd (σ̂2
u), d = 1, . . . ,D

• El EBLUP se mantiene insesgado bajo el modelo, si:

X La distributión de ud es simétrica.
X σ̂2

u par: σ̂2
u(y) = σ̂2

u(−y).
X σ̂2

u invariante por traslaciones: σ̂2
u(y + Xγ) = σ̂2

u(y) para todo
y y γ.
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MÉTODOS DE AJUSTE

X Método de ajuste FH;

X Máxima Verosimilitud (ML);

X Máxima Verosimilitud Restringida/Residual (REML);

X Método de momentos de Prasad-Rao.
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MÉTODO DE AJUSTE FH

• Se verifica

δ̂DIR
d

ind∼ N(x′dβ, σ
2
u +ψd)⇒

D∑
d=1

{
δ̂DIR
d − x′d β̃(σ2u)

}2

σ2u + ψd
∼ X 2

D−p

• Método Fay-Herriot: Resolver iterativamente para σ2u la
ecuación

h(σ2u) =
D∑

d=1

(
δ̂DIR
d − x′d β̃(σ2u)

)2
σ2u + ψd

= D − p.

Parar cuando las iteraciones convergen a una solución σ̃2u

Tomar σ̂2u = max(σ̃2u, 0) y β̂ = β̃(σ̂2u).

No se requiere normalidad.
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OTROS MÉTODOS DE AJUSTE

• Máxima verosimilitud: Habitualmente bajo normalidad

δ̂DIR
d ∼ N(x′dβ, σ

2
u + ψd)

Los estimadores ML son consistentes en ausencia de
normalidad (bajo ciertas condiciones de regularidad).

• Máxima verosimilitud restringida (REML): Reduce el
sesgo de los estimadores ML para tamaño muestral pequeño n
en comparación con p.

• Método de Prasad-Rao: Método de momentos. Proporciona
buenos valores iniciales para algoritmos iterativos de ajuste.

(X Prasad & Rao, 1990)
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ERROR CUADRÁTICO MEDIO

• Bajo normalidad de ud y ed , cuando D →∞,

ECM(δ̂EBLUPd ) = g1d(σ2u) + g2d(σ2u) + g3d(σ2u) + o(D−1),

donde

g1d(σ2u) = γdψd = O(1),

g2d(σ2u) = (1− γd)2x′d

(
D∑

d=1

γdxdx′d

)−1
xd = O(D−1),

g3d(σ2u) = (1− γd)2γdσ
−2
u V̄ (σ̂2u) = O(D−1),

• V̄ (σ̂2u) varianza asintótica de σ̂2u: Depende del método de
estimación usado para σ2u.

X Prasad & Rao (1990), JASA 47
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ERROR CUADRÁTICO MEDIO

Esquema de la demostración (estimación ML): Hemos
obtenido µ = α′u, donde

α′ = `′QX′V−1 + σ2um′P, P = V−1 − V−1XQX′V−1,

para Q = (X′V−1X)−1 = (
∑

d γdxdx′d)−1.

Reemplazando α′ y m′ = (0′d−1, 1, 0
′
D−d) en ECM(µ̃), y

observando que
PVP = P, PX = 0D ,

obtenemos que

ECM(δ̃BLUPd ) = g1d(σ2u) + g2d(σ2u),

donde

g1d(σ2u) = γdψd ,

g2d(σ2u) = (1− γd)2x′d(
∑
d

γdxdx′d)−1xd .
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ERROR CUADRÁTICO MEDIO

• Descomposición del ECM:

ECM(δ̂EBLUPd ) = E (δ̂EBLUPd − δd)2

= E (δ̂EBLUPd − δ̃BLUPd + δ̃BLUPd − δd)2

= ECM(δ̃BLUPd ) + E (δ̂EBLUPd − δ̃BLUPd )2

+ 2E (δ̂EBLUPd − δ̃BLUPd )(δ̃BLUPd − δd).

• Si σ̂2u es par e invariante por translaciones, entonces bajo
normalidad

E (δ̂EBLUPd − δ̃BLUPd )(δ̃BLUPd − δd) = 0.

• Por tanto,

ECM(δ̂EBLUPd ) = ECM(δ̃BLUPd ) + E (δ̂EBLUPd − δ̃BLUPd )2.

X Kackar & Harville (1984), JASA 49



INTRODUCCIÓN EST. INDIRECTOS MOD. NIVEL ÁREA M. UNIDAD MÉTODO EB BINARIOS

ERROR CUADRÁTICO MEDIO

• Expansión de Taylor de primer orden de δ̃BLUPd (σ̂2u) en torno a
σ2u:

δ̂EBLUPd ≈ δ̃BLUPd +
∂δ̃BLUPd

∂σ2u
(σ̂2u − σ2u).

• Entonces,

E (δ̂EBLUPd − δ̃BLUPd )2 ≈ E

(∂δ̃BLUPd

∂σ2u

)2

(σ̂2u − σ2u)2

 .
• Reemplazamos y = Xβ + v en δ̃BLUPd = α′y:

δ̃BLUPd = `′β + b′v, v = u + e ∼ N(0D ,V).

Entonces,
∂δ̃BLUPd

∂σ2u
=
∂b′

∂σ2u
v.
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ERROR CUADRÁTICO MEDIO

• Por tanto,

E (δ̂EBLUPd − δ̃BLUPd )2 ≈ E

[
∂b′

∂σ2u
vv′
(
∂b′

∂σ2u

)′
(σ̂2u − σ2u)2

]
.

• σ̂2u estimador ML de σ2u.

• Por la expansión de primer orden de Taylor de
s(σ̂2u) = ∂ log L(σ̂2u)/∂σ̂2u en el valor σ2u, y sabiendo que

∂s(σ2u)/∂σ2u
P→ −I(σ2u), donde I(σ2u) es la información de

Fisher,
σ̂2u ≈ σ2u + I(σ2u)s(σ2u)
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ERROR CUADRÁTICO MEDIO

• Función de log-verosimilitud:

log L(σ2u) = −D

2
log(2π)− 1

2
log |V|− 1

2
(y−Xβ)′V−1(y−Xβ).

• Score (gradiente de la log-verosimilitud):

s(σ2u) = −1

2
tr(V−1)− (y − Xβ)︸ ︷︷ ︸

v′

′V−3(y − Xβ)︸ ︷︷ ︸
v

.

• Información de Fisher:

I(σ2u) = −1

2
tr(V−2).

• Finalmente, usando las expresiones del score y la inf. de
Fisher, se calcula la siguiente esperanza teniendo en cuenta la
normalidad de v:

E (δ̂EBLUPd − δ̃BLUPd )2 ≈ E

[
∂b′

∂σ2u
vv′
(
∂b′

∂σ2u

)′
I2(σ2u)s2(σ2u)

]
.
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ERROR CUADRÁTICO MEDIO

• Se cumple que

E [g1d(σ̂2u)] ≈ g1d(σ2u)− g3d(σ2u),

E [g2d(σ̂2u)] ≈ g2d(σ2u), E [g3d(σ̂2u)] ≈ g3d(σ2u).

• El estimador del ECM cuando σ̂2u se obtiene mediante REML:

mse(δ̂EBLUPd ) = g1d(σ̂2u) + g2d(σ̂2u) + 2g3d(σ̂2u)

• Es casi insesgado:

E
[
mse(δ̂EBLUPd )

]
= ECM(δ̂EBLUPd ) + o(D−1)

• Cuando σ̂2u se obtiene por FH o ML, se debe añadir un
término debido al sesgo en σ̂2u.

X Prasad & Rao (1990), JASA 53
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EBLUP BAJO EL MODELO FH

INDICADORES OBJETIVO:

• Indicadores generales.

REQUERIMIENTOS DE DATOS:

• Valores agregados de p variables auxiliares A nivel de dominio.

• Tamaños poblacionales de los dominios.
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EBLUP BAJO EL MODELO FH
VENTAJAS:

• Requiere solo información auxiliar a nivel de área, que está
disponible fácilmente y evita problemas de confidencialidad.

• Hace uso de los pesos muestrales mientras γd 6= 0. Es
consistente bajo el diseño cuando nd →∞. Por tanto, se verá
menos afectado por muestreo informativo.

• Asigna automáticamente mayor peso al estimador sintético
de regresión cuando el tamaño muestral del área es pequeño.

• A menudo es más eficiente que el estimador directo.

• Tiene en cuenta la heterogeneidad no explicada entre áreas si
γd 6= 0.
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EBLUP BAJO EL MODELO FH

VENTAJAS:

• Tiende al estimador directo cuando aumenta el tamaño
muestral del dominio (ψd decrece).

• Para estimadores directos lineales, el T. Central del Ĺımite
garantiza una ḿınima bondad de ajuste en las áreas de
tamaños muestrales no demasiado pequeños. At́ıpicos aislados
tienen efecto pequeño debido a la agregación.

• El estimador del ECM de Prasad-Rao es un estimador estable
del ECM bajo el diseño y es insesgado bajo el diseño
cuando se promedia a lo largo de un número grande de áreas.

• Para estimar en dominios no muestreados, se puede usar el
componente sintético (γd = 0).
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EBLUP BAJO EL MODELO FH

DESVENTAJAS:

• Pérdida de información en el proceso de agregación de las
variables auxiliares.

• Solo D (t́ıpicamente << n) observaciones para ajustar el
modelo. En nuestros ejemplos, ganacias pequeñas respecto a
los estimadores directos.

• Es necesario diagnosticar del modelo. Probleams potenciales
de linealidad para parámetros no lineales.

• Se requiere estimación preliminar de las varianzas muestrales
ψd . ¡El mismo problema de áreas pequeñas!
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EBLUP BAJO EL MODELO FH

DESVENTAJAS:

• Si queremos estimar varios indicadores definidos en términos
de la misma variable objetivo, se requiere encontrar un buen
modelo para cada indicador.

• Los estimadores no se pueden desagregar para subdominios.

• La fórmula del estimador de ECM de Prasad-Rao es correcta
bajo el modelo con normalidad, pero no es insesgado bajo el
diseño para el ECM en un área concreta).

• Se requiere reajuste para satisfacer la propiedad
“benchmarking”.
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MODELO CON ERRORES ANIDADOS

• ydj valor de la variable objetivo para la unidad j dentro del
área d

• ud efecto aleatorio del área d

• Modelo de regresión lineal con errores anidados:

ydj = x′djβ + ud + edj , j = 1, . . . ,Nd , d = 1, . . . ,D

ud
iid∼ N(0, σ2u), edj

iid∼ N(0, σ2e )

• Modelo en notación matricial:

y = Xβ + Zu + e

• Esperanza y varianza marginales:

E (y) = Xβ, V (y) = σ2uZZ′ + σ2e IN

X Battese, Harter & Fuller (1988), JASA 59
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BLUP: MODELO LINEAL GENERAL

Modelo lineal más general:

• y = (y1, . . . , yN)′ vector poblacional (aleatorio)

• Modelo lineal:

E (y) = Xβ, V (y) = V

• Descomposición en partes muestreada y no muestreada

y =

(
ys
yr

)
, X =

(
Xs

Xr

)
, V =

(
Vss Vsr

Vrs Vrr

)
• Parámetro lineal objetivo:

δ = a′y = a′sys + a′ryr
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BLUP: MODELO LINEAL GENERAL

Mejor predictor lineal insesgado (BLUP): V conocido

El predictor lineal δ̃ = α′ys que es solución del problema:

ḿınα∈IRn ECM(δ̃) = E (δ̃ − δ)2

s.a. E (δ̃ − δ) = 0

viene dado por
δ̃BLUP = a′sys + a′r ỹ

BLUP
r ,

donde

ỹBLUPr = Xr β̃ + VrsV
−1
ss (ys − Xs β̃),

β̃ = (X′sV
−1
ss Xs)−1X′sV

−1
ss ys

X Royall (1970), Biometrika 61
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BLUP BAJO MOD. ERRORES ANIDADOS

• BLUP de δ = Ȳd Bajo el modelo con errores anidados:

˜̄Y BLUP
d =

1

Nd

∑
j∈sd

ydj +
∑
j∈rd

ỹBLUPdj

 ,

donde

ỹBLUPdj = x′dj β̃ + ũd , β̃ estimador WLS de β,

ũd = γd(ȳd − x̄′d β̃), γd = σ2u/(σ2u + σ2e/nd).

• Cuando nd/Nd ≈ 0,

˜̄Y BLUP
d ≈ γd

{
ȳd + (X̄d − x̄d)′β̃

}
+ (1− γd)X̄′d β̃

• Composición entre estimadores “survey regression”
ȳd + (X̄d − x̄d)′β̃ y sintético de regresión X̄′d β̃.
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BLUP EMṔIRICO (EBLUP)

• BLUP depende de θ = (σ2u, σ
2
e )′ desconocido:

δ̃BLUP = δ̃BLUP(θ).

• EBLUP de δ: θ̂ = (σ̂2u, σ̂
2
e )′ estimador de θ

δ̂EBLUP = δ̃BLUP(θ̂),

• Estimadores de σ2u y σ2e :

X Método de Henderson III (método de momentos);
X ML;
X REML.
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EBLUP BAJO MODELO A NIVEL UNIDAD

INDICADORES OBJETIVO:

• Medias de totales de la variable de interés.

REQUERIMIENTOS DE DATOS:

• Microdatos para las p variables auxiliares en la encuesta.

• Indicador del dominio en la encuesta.

• Medias poblacionales de las p variables auxiliares para los
dominios.
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EBLUP BAJO MODELO A NIVEL UNIDAD

VENTAJAS:

• Usa información auxiliar a nivel unidad, que es más detallada
que la información a nivel de área.

• El tamaño total muestral es t́ıpicamente grande (n >> D),
aśı que se comparte mucha información.

• Incorpora heterogeneidad no explicada entre áreas.

• Es necesario diagnosticar el modelo.

• No requiere disponer de las varianzas muestrales de los
estimadores directos.

• Automáticamente comparte información entre áreas (“borrows
strength”) cuando el tamaño muestral del dominio es pequeño
y tiende al estimador “survey-regression” cuando el tamaño
muestral del dominio aumenta.
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EBLUP BAJO MODELO A NIVEL UNIDAD

VENTAJAS:

• Los estimadores se pueden desagregar para subáreas (sin
efecto de sub-área) o incluso para individuos.

• Estimadores insesgados bajo el modelo (no es necesaria
normalidad pero śı simetŕıa).

• Estimadores del ECM con sesgo despreciable bajo el modelo
con normalidad.

• Estimador del ECM bajo el modelo estable para el ECM bajo
el diseño e insesgado bajo el diseño cuando se promedia para
muchos dominios.

• Para estimar en áreas no muestreadas, se puede usasr la parte
sintética.
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EBLUP BAJO MODELO A NIVEL UNIDAD

DESVENTAJAS:

• Información auxiliar a nivel unidad de dif́ıcil acceso por
temas de confidencialidad.

• Solo se aplica a parámetros lineales.

• No se usan los pesos muestrales, de modo que puede ser
sesgado bajo el diseño, especialmente bajo muestreo
informativo.

• Se puede ver afectado por datos anómalos y/o falta de
normalidad.
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EBLUP BAJO MODELO A NIVEL UNIDAD

DESVENTAJAS:

• Sensible a desviaciones del modelo. Diagnóstico del modelo
muy importante.

• Estimador del ECM por la fórmula de Prasad-Rao correcto
bajo el modelo con normalidad. (no insesgado bajo el diseño
para el MSE bajo el diseño en un área concreta).

• Es necesario un reajuste para satisfacer la propiedad
“benchmarking”.
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MEJOR PREDICTOR

Mejor predictor (BP)

Consideramos δ = h(y), no necesariamente lineal. El predictor
δ̃ = g(ys) que minimiza ECM(δ̃) = E (δ̃ − δ)2 es

δ̃BP = Eyr (δ|ys).

Demostración: Definimos δ0 = Eyr (δ|ys). Observemos que

ECM(δ̃) = Ey{(δ̃ − δ0)2}+ 2Ey{(δ̃ − δ0)(δ0 − δ)}+ Ey{(δ0 − δ)2}.

El último término no depende de δ̃. Para el segundo término,

Ey{(δ̃ − δ0)(δ0 − δ)} = Eys

[
Eyr

{
(δ̃ − δ0)(δ0 − δ)|ys

}]
= Eys

[
(δ̃ − δ0)

{
δ0 − Eyr (δ|ys)

}]
= 0.

El ḿınimo de Ey{(δ̃ − δ0)2} se alcanza para δ̃BP = δ0 = Eyr (δ|ys). 69
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MEJOR ESTIMADOR EMṔIRICO

• El mejor predictor es insesgado:

Eys (δ̃
BP) = Eys{Eyr (δ|ys)} = Ey(δ).

• Para un modelo lineal con E (y) = Xβ y V (y) = V(θ) con β
y θ desconocidos, el BP depende de β y θ:

δ̃BP = δ̃BP(β,θ).

• Mejor predictor emṕırico (EBP): θ̂ estimador de θ. Entonces

δ̂EBP = δ̃BP(β̃(θ̂), θ̂).
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MEJOR PREDICTOR: PARÁMETRO LINEAL

• Caso particular: Consideramos un parámetro lineal

δ = a′y = a′sys + a′ryr

Si y se distribuye como una normal, entonces el BP es

δ̃BP = a′sys + a′r ỹ
BP
r ,

donde
ỹBPr = Xrβ + VrsV

−1
ss (ys − Xsβ).

• Usando β̃ para estimar β, el EBP coincide con el EBLUP.
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MÉTODO EB: INDICADORES DE POBREZA

• Indicador de pobreza para el dominio d :

Fαd =
1

Nd

Nd∑
j=1

(
z − Edj

z

)α
I (Edj < z) , d = 1, . . . ,D.

• La distribución de la renta Edj es marcádamente asimétrica
por la derecha.

• Seleccionamos una transformación T () tal que la distribución
de ydj = T (Edj) sea aprox. normal.

• Hipótesis: ydj = T (Edj) satisface el modelo con errores
anidados

ydj = x′djβ + ud + edj , ud
iid∼ N(0, σ2u), edj

iid∼ N(0, σ2e ).
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MÉTODO EB: INDICADORES DE POBREZA

• Vector para área d : yd = (yd1, . . . , ydNd
)′.

• Indicador de pobreza en términos de yd :

Fαd =
1

Nd

Nd∑
j=1

{
z − T−1(ydj)

z

}α
I
{
T−1(ydj) < z

}
= hα(yd).

• Partición de yd en muestra y no-muestra: yd = (y′ds , y
′
dr )′

• Mejor predictor:

F̃BP
αd = Eydr [Fαd |yds ] .

X Molina and Rao (2010), CJS 73
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MÉTODO EB

• Distribución de ydr dado yds bajo el modelo con errores
anidados:

ydr |yds ∼ N(µdr |s ,Vdr |s),

donde

µdr |s = Xdrβ + γd(ȳds − x̄′dsβ)1Nd−nd ,

Vdr |s = σ2u(1− γd)1Nd−nd 1′Nd−nd + σ2e INd−nd ,

y
γd = σ2u(σ2u + σ2e/nd)−1.

• La distribución condicionada depende de θ = (β′, σ2u, σ
2
e )′.

• Mejor predictor emṕırico (EB): Reemplazamos un
estimador consistente θ̂ de θ

F̂EBP
αd = F̃BP

αd (θ̂).

X Molina & Rao (2010), CJS 74
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APROXIMACIÓN MONTE CARLO

(a) Generar L vectores fuera de muestra y
(`)
dr , ` = 1, . . . , L de la

distribución condicionada (estimada) de ydr |yds .

(b) Unir los elementos de la muestra para formar un vector censal

y
(`)
d = (yds , y

(`)
dr ), ` = 1, . . . , L.

(c) Calcular el indicador de interés con cada vector poblacional

F
(`)
αd = hα(y

(`)
d ), ` = 1, . . . , L. Después tomar el promedio para

las L simulaciones Monte Carlo:

F̂EBP
αd =

1

L

L∑
`=1

F
(`)
αd .

(d) El ECM se puede estimar mediante bootstrap paramétrico.

X Molina & Rao (2010), CJS 75
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ECM POR BOOTSTRAP PARAMÉTRICO

(i) Generar B vectores poblacionales (censos) bootstrap a partir
del modelo ajustado

y∗(b) = (y
∗(b)
1 , . . . , y

∗(b)
D ), b = 1, . . . ,B.

(ii) Calcular los verdaderos parámetros bootstrap

δ
∗(b)
d = h(y

∗(b)
d ), b = 1, . . . ,B.

(iii) Con la parte de la muestra y
∗(b)
s = (y

∗(b)
1s , . . . , y

∗(b)
Ds )′ del

vector poblacional y∗(b), calcular los estimadores EB:

δ̂
EBP∗(b)
d , b = 1, . . . ,B.

(iv) Estimador näıve del ECM por bootstrap paramétrico:

mse∗(δ̂
EBP
d ) =

1

B

BP∑
b=1

(
δ̂
EBP∗(b)
d − δ∗(b)d

)2
X González-Manteiga et al. (2008), JSCS 76
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EB BAJO EL MODELO A NIVEL UNIDAD

INDICADORES OBJETIVO:

• Indicadores generales definidos en términos de una variable
continua (ej. renta) que será modelizada.

REQUERIMIENTOS DE DATOS:

• Microdatos de las p variables auxiliares en la encuesta.

• Indicador de dominio en la encuesta.

• Microdatos de las p variables auxiliares para todas las
unidades de la población (censo o registro administrativo).
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EB BAJO EL MODELO A NIVEL UNIDAD

VENTAJAS:

• Se usa información auxiliar a nivel de unidad, que es más
detallada que la información a nivel de área.

• El tamaño muestral total es habitualmente muy grande
(n >> D), por lo que se comparte mucha información.

• Incorpora heterogeneidad no explicada entre áreas.

• Permite estimar parámetros no lineales generales h(y), donde
y se distribuye según una normal.
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EB BAJO EL MODELO A NIVEL UNIDAD

DESVENTAJAS:

• Se generan censos completos. Por tanto, se pueden estimar varios
indicadores a partir del mismo modelo.

• Estimadores aprox. insesgados y óptimos bajo el modelo con
normalidad.

• Las estimaciones se pueden desagregar en cualquier subdominio (sin
efecto de subdominio), incluso a nivel de unidad.

• Estimadores del ECM bajo el modelo con sesgo despreciable bajo
normalidad, para parámetros lineales.

• Estimador del ECM bajo el modelo es estable para el ECM bajo el
diseño cuando se promedia para muchos dominios, para parámetros
lineales.
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EB BAJO EL MODELO A NIVEL UNIDAD

DESVENTAJAS:

• Información auxiliar para cada unidad de la población
(censo/registro) no es fácilmente accesible.

• Computacionalmente intensivo.

• No utiliza los pesos de muestreo, por lo que puede ser
sesgado bajo el diseño, especialmente bajo muestreo
informativo.

• Sensible a desviaciones del modelo. Es muy importante
encontrar la transformación correcta de la variable y la
diagnosis del modelo.

• Los estimadores del ECM por bootstrap son
computacionalmente intensivos.
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MODELOS LINEALES GENERALIZADOS

• ydj ∈ {0, 1}, donde 1=presencia de la caracteŕıstica de interés,
0=ausencia.

• Parámetros objetivo: proporciones de individuos con dicha
caracteŕıstica,

Pd =
1

Nd

Nd∑
j=1

ydj , d = 1, . . . ,D.

• Modelo loǵıstico mixto:

ydj |ud
ind .∼ Bern(pdj), j = 1, . . . ,Nd , d = 1, . . . ,D,

pdj =
exp(x′djβ + ud)

1 + exp(x′djβ + ud)
, ud

iid∼ N(0, σ2u).

X González-Manteiga et al. (2007), CSDA 81
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ESTIMADORES DE ÁREAS PEQUEÑAS

• Mejor predictor:

P̂BP
d =

1

Nd

∑
j∈sd

ydj +
∑
j∈rd

E (ydj |yds)

 , d = 1, . . . ,D.

• La esperanza de E (ydj |yds) no se puede calcular
anaĺıticamente: es necesario utilizar métodos de simulación
para las aproximaciones (ej. Laplace o Monte Carlo).
• Estimadores simples tipo plug-in:

P̂Plug
d =

1

Nd

∑
j∈sd

ydj +
∑
j∈rd

p̂Plugdj

 , d = 1, . . . ,D.

• p̂Plugdj = exp(x′dj β̂ + ûd)/{1 + exp(x′dj β̂ + ûd)} predicción de
las probabilidades mediante el ajuste del GLMM.
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MÉTODOS DE AJUSTE

• Verosimilitud muestral:

f (ys) =

∫
IRD

f (ys ,u)du =

∫
IRD

f1(ys |u)f2(u)du

• No se puede obtener una expresión anaĺıtica para la
verosimilitud.

• ML: Se requieren aproximaciones (ej. Laplace) o métodos
numéricos para maximizar la verosimilitud.
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CUASI-VEROSIMILITUD PENALIZADA (PQL)
+ML APROXIMADA

(A) σ2u conocida: algoritmo PQL (X Breslow & Clayton, 1993):

(β̂, û) = argmax(β,u)f (ys ,u)

(B) β y u conocido: ML aproximado

σ̂2u = argmaxσ2
u
fL(ys)

fL verosimitud normal multivariante de un modelo lineal mixto
que aproxima el GLMM.

X Schall (1991) X Saei & Chambers (2003) 84
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CUASI-VEROSIMILITUD PENALIZADA (PQL)
+ML APROXIMADA

• Proporciona estimadores que pueden ser inconsistentes.

• El ECM se puede estimar por bootstrap paramétrico.

• Ajuste GLMM + EBP + ECM bootstrap: altamente intensivo
a nivel computacional. Inviable para poblaciones grandes.

• Ajuste GLMM + Estimador plug-in + ECM bootstrap: más
viable pero no óptimo.
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EXTENSIÓN: VARIAS CATEGOŔIAS

• Yd1 total de desempleados en área d ;

• Yd2 total de empleados en área d ;

• Rd tasa de desempleados en área d ;

Rd =
Yd1

Yd1 + Yd2
× 100.
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MODELO LOGÍSTICO MIXTO MULTINOMIAL

• Tres categoŕıas excluyentes:
ydj1 1=desempleados, 0=otros
ydj2 1=empleados, 0=otros
ydj3 1=inactivo, 0=otros

• Modelo Multivariante:

(ydj1, ydj2, ydj3) ∼ Multin(mdj ; pdj1, pdj2, pdj3)

Desempleado : log(pdj1/pdj3) = x′dj1β1 + ud1
Empleado : log(pdj2/pdj3) = x′dj2β2 + ud2

• Efectos aleatorios espećıficos para las categoŕıas:
u = (ud1, ud2)′ ∼ N2(0,Σu).
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MODELO LOGÍSTICO MIXTO MULTINOMIAL

• Estimadores plug-in de totales de desempleados/empleados:

Ŷ Plug
dk =

∑
j∈sd

ydjk +
∑
j∈rd

p̂Plugdjk , k = 1, 2.

• Estimadores plug-in de tasas de desempleados:

RPlug
d =

Ŷ Plug
d1

Ŷ Plug
d1 + Ŷ Plug

d2

× 100.

X Molina, Saei & Lombard́ıa (2007), JRSSA 88
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MODELOS PARA DATOS BINARIOS

INDICADORES OBJETIVO:

• Proporciones o totales de una variable binaria (ej. acceso o no
a cierto servicio o comodidad).

REQUERIMIENTOS DE DATOS:

• Microdatos para las p variables auxiliares en la encuesta.

• Indicador del dominio en la encuesta.

• Microdatos de las p variables auxiliares para todas las
unidades poblacionales (censo o registro administrativo).
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MODELOS PARA DATOS BINARIOS

VENTAJAS:

• Utiliza información auxiliar de nivel de unidad, que es más
detallada que la información de nivel de área.

• El tamaño total de la muestra es t́ıpicamente muy grande
(n >> D), por lo que se comparte mucha información.

• Incorpora heterogeneidad no explicada entre áreas.

• EB es aprox. insesgado y óptimo bajo el modelo.

• Las estimaciones se pueden desagregar para cualquier
subdominio (sin efecto de subdominio), incluso a nivel de
unidad.

• Para estimar en áreas no muestreadas, se puede usar la parte
sintética.
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MODELOS PARA DATOS BINARIOS

DESVENTAJAS:

• Información auxiliar para cada unidad de población (censo/registro)
no es fácilmente accesible.

• Computacionalmente intensivo.

• No utiliza los pesos del muestreo, por lo que puede ser sergado
bajo el diseño, especialmente bajo el muestreo informativo.

• Sensible a desviaciones del modelo. Encontrar la transformación
correcta de la variable y la diagnosis de modelo muy importante.

• Estimador EB (al contrario que el tipo plug-in) es
computacionalmente intensivo.

• Estimadores del ECM por bootstrap son computacionalmente
intensivos (aún más para estimadores EB).

• Es necesario un reajuste para que verifiquen la propiedad
“benchmarking”.
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SOFTWARE

El paquete R sae contiene funciones:

• Estimadores directos: direct.

• Estimadores tradicionales indirectos: pssynt, ssd.

• Modelo FH: eblupFH, mseFH.

• Modelo FH espacial: eblupSFH, mseSFH, pbmseSFH,
npbmseSFH.

• Modelo FH espacio-temporal: eblupSTFH, pbmseSTFH.

• Modelo con errores anidados: eblupBHF, pbmseBHF.

• Método EB bajo modelo con errores anidados: ebBHF,
pbmseebBHF.

• Conjuntos de datos y ejemplos.

X Molina & Marhuenda (2015), The R Journal 92
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RESUMEN

(a) Medidas preventivas sobre el diseño muestral pueden reducir
significativamente la necesidad de estimaciones indirectas.

(b) Información auxiliar de calidad relacionada con la variable de interés
juega un papel crucial en la estimación basada en modelos. Es
necesario facilitar el acceso a la información auxiliar mediante
coordinación y cooperación entre instituciones.

(c) La validación del modelo es crucial. También son deseables estudios
de evaluación externa.

(d) Los modelos de nivel de área tienen mayor alcance que los modelos
de nivel de unidad debido a que la información auxiliar a nivel de
área es más fácilmente accesible. Pero la necesidad de conocer las
varianzas muestrales de los estimadores directos es restrictiva. Se
necesita más investigación para obtener buenas aproximaciones a
dichas varianzas muestrales. Los modelos a nivel de unidad pueden
ganar mucha más eficiencia si se dispone de los datos necesarios.
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REFERENCIAS

• Fay, R.E. and Herriot, R.A. (1979). Estimation of Income for Small
Places: An Application of James-Stein Procedures to Census Data,
J. Amer. Statist. Assoc., 74, 269–277.
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