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INFERENCIA BASADA EN EL DISENO/MODELO

ELEMENTO BAJO UN MODELO BAJO EL DISENO

Poblacién  y ~ Py u={1,...,N},
y: {)’1;-~-7)/N}
Muestra Yy=01,---,¥n) s=(i,...,in) € Sz,
yi iid. asy Y= is-5 Vi)
Distr. Prob.  Py(y) P (s)
Pardmetro 6 (e.g., 0 = Ep,(y)) 0= h(,...,¥n)
Estimador  A(y) 0(s)

Disefio muestral: (S;, P), Sz C P(U) conjunto de muestras, Py
distribucién de probabilidad sobre S; donde P,(s) >0, Vs € S;,y
todas las unidades j € U estan contenidas en alguna muestra

ses,. 3
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INFERENCIA BASADA EN EL DISENO

® (J poblacién finita de tamano N.
® y1,...,yn mediciones para las unidades poblacionales (fijas).
® Parametro objetivo:
d=h(y1,...,yn)-
[ ]

Ejemplo: media poblacional

=

- 1 N
Y = Zyj.
j=1

® s muestra aleatoria de tamaiio n obtenida de una poblacién
U bajo un diseno dado.

r = U — s no-muestra (tamafio N — n).
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ESTIMADOR DE HORVITZ-THOMPSON

m; probabilidad de inclusién de la unidad j en la muestra.

d;j = 1/mj peso muestral de la unidad ;.

Horvitz-Thompson (HT) estimador de la media:

® Varianza bajo el diseio:

N
2 1 Yi Yk
Ve(Y) = 5 D 0> (mjue — mjmie) 2

b
VIS
=1 k=1 J 7k

mj « probabilidad de inclusién conjunta de las unidades j y k.

v' Hansen, Hurwitz & Madow (1953) 5
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VARIANZA BAJO EL DISENO

e Estimador insesgado de la varianza bajo el diseio:

B B) Pkl P
N2 T Tk

jEs kes

~<|>

Vie(

v' Sérndal, Swensson & Wretman (1992), ecuacion (5.8.5)

® Usando la aproximacién m; = mjmy, j # k,

o 1—
(Y) gNZZ ;f yE =" di(d; —1)y?.

JEs JEs
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EJEMPLO: INDICADORES DE POBREZA FGT

E; medida del poder adquisitivo para individuo j (ej. ingreso
neto anual por unidad de consumo).

z umbral de pobreza: En paises de la UE,

z = 0.6 x Mediana(E;).

Familia de indicadores de pobreza FGT:

1L /z— EN\®
— J .
Fo = NJ.E_1< . > I(Ej <z), a>0.

® o =0 = Tasa/Incidencia de Pobreza

® o =1 = Brecha de Pobreza

v’ Foster, Greer & Thornbecke (1984), Econometrica 7
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ESTIMADOR DE HORVITZ-THOMPSON

® |ndicador de pobreza:

® Estimador HT de F,:
A 1
Fo=5 ZdJFaj.
JES
® \arianza estimada:

~ o 1
Ve(Fa) = 52 D_ i(ds — DFE.
JjEs
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AJUSTES DEL ESTIMADOR DE HT

® g; factor de ajuste del peso muestral d}, j € s.
® w; = d;gj peso ajustado, j € s.
® Estimador con pesos ajustados:

?A:%ZWM.

JEs
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EST. INDIRECTOS

EJEMPLO 1: ESTIMADOR DE RAZON

® Estimador HT del tamano poblacional:
N=>"d.
JEs

=

Vj € s.

I

® Factor de ajuste constante:
& ==
TN

. V=) dy

e Estimador de razon:
JEs

fr

= <

10



INTRODUCCION EST. INDIRECTOS MOD. NIVEL AREA M. UNIDAD METODO EB BINARIOS
0000000080000000 000000000000000000 0O00000000000000000000 0000000000 OOO000000000 00000000

EJEMPLO 2: EST. RAZON CON VARIABLE AUX.

e X = ZJN:1 x; total conocido de variable auxiliar x con valores
poblacionales:
X1y y XN-
® Estimador HT de X:
X =Y dx;.
JEs
® Factor de ajuste:
X .
g = 3 Vj € s.
® Estimador de razdn con variable auxiliar X:
prx_ X
® El estimador de razén anterior se obtiene tomando x; = 1,

Vj e U.
11
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EJEMPLO 3: CALIBRACION

® p variables auxiliares con totales poblacionales conocidos Xy,

k=1,...,p.
® Idea: Encontrar pesos w;, j € s, que minimicen la distancia
X2
. Z (w; — dj)2
min
g
JES
s.t. ZWijk:Xka k=1,...,p.
jEs

® Solucién: w; = d;g;, donde gj =1 + xﬁ'*l(X ~X),

xj:(X.l-17"‘7ij)/a x:(Xl,...,Xp)l, -II\-:ZdJXJx_;
jEs

v’ Deville & Sarndal (1992), JASA 12
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EJEMPLO 3: CALIBRACION

® Modelo de regresidn lineal:
yi=x;8+¢e, E(eg)=0, E(ej2) =02, j=1,...,N.

® Estimador de coeficientes de la regresion:

BT 1Y dy
Jj€s
e Estimador de regresién generalizada (GREG):
YA Y 4 (x - X)B.
® ;Coincide con el estimador de calibracién!

v’ Deville & Sarndal (1992), JASA 13
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ESTIMACION EN DOMINIO/AREA

® (J particionada en D dominios Uy, ..., Up de tamaiios
Ny, ..., Np.
® s, muestra de tamafio ny obtenida de Uy.
® Tamafio muestral total n = 25:1 ng.
® ry = Uy — sy complemento de la muestra, de tamano Ny — ng.

Ejemplo: Encuesta de condiciones de vida en 2006

Tamaiio muestral total: n = 34,389 personas.
Resumen de tamanos muestrales por provincia x género:

(Barcelona,M) | (Cérdoba,M) | (Tarragona,V) | (Soria,M)
1483 230 129 17

14
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ESTIMADORES TRADICIONALES DIRECTOS

® Pardmetro objetivo: 04 = hy({y;ij € Uq}).
® Ejemplo: media del dominio d-ésimo

Estimador directo: Usa solo los datos del drea especifica.
Ejemplo: Estimador HT de \_/d,

DIR

JESd

Estimador de la varianza: Usando 7 x = w7y, j # k,

Vo (YPIRY = Zd (dj —

JGSd

15
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ESTIMADORES DIRECTOS

INDICADORES OBIJETIVO:

e Aditivos en las observaciones individuales.

REQUERIMIENTOS de DATOS:

® Pesos muestrales d;, j € sy para las unidades muestreadas en
el drea.

® Para el estimador de HT de la media y para el estimador de
Hajek del total, el tamafo poblacional del dominio Ng.

16



INTRODUCCION EST. INDIRECTOS MOD. NIVEL AREA M. UNIDAD METODO EB BINARIOS
0000000000000080 000000000000000000 0O00000000000000000000 0000000000 OOO000000000 00000000

ESTIMADORES DIRECTOS

VENTAJAS:

¢ Sin supuestos de modelo (no paramétrico).

® Se pueden usar pesos muestrales = Aproximadamente
insesgados y consistentes bajo el disefo cuando ny 1.

e Aditividad (propiedad “benchmarking”):

D
Z yDIR _ yDIR,
d=1

DESVENTAJAS:

* V,(YPR) 4 cuando ny |. Muy ineficiente para dominios
pequenios.
® No se pueden calcular para dreas no muestreadas (ny = 0).
17
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LIMITES DE DESAGREGACION

RECOMENDACIONES:

(i) Usar estimadores directos a nivel nacional y para
desagregaciones con CV estimado por debajo de un limite
especificado para todas las areas.

(ii) Para mayores desagregaciones, usar estimadores indirectos en
las areas con sesgo absoluto relativo por debajo de un limite
dado.

(iii) Para areas donde los estimadores indirectos exceden el limite
de sesgo, no obtener estimaciones. Siempre es posible
modificar el reparto del tamafio muestral total entre las dreas
para tener un nimero minimo de observaciones en cada drea.

18
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ESTIMADORES INDIRECTOS

e Estimador indirecto: Estimador que comparte informacién
con otras areas (“borrows strength”) estableciendo
relaciones de homogeneidad entre ellas (modelo con
pardmetros comunes).

19



INTRODUCCION EST. INDIRECTOS MOD. NIVEL AREA M. UNIDAD METODO EB BINARIOS
0000000000000000 O@O000000000000000 0O00000000000000000000 0000000000 0OO000000000 00000000

PRIMERA APLICACION DE REGRESION SINTETICA
Encuesta de Radio 1945:

® QObjetivo: estimar la mediana del niimero de emisoras de radio
que son escuchadas durante el dia en 500 condados de EE.UU.

® Encuesta por correo: En cada uno de los 500 condados, se
muestrearon 1000 familias y se les envié un cuestionario por
correo. Tasa de respuesta solo 20 % y cobertura incompleta.

® x, num. mediano de emisoras escuchadas durante el dia
(encuesta por correo) en el condado d-ésimo, para
d=1,...,500. Sesgado debido a la falta de respuesta y
cobertura incompleta.

® Encuesta con entrevistas personales en 85 condados: muestra

probabilistica de 85 condados, éstos son submuestreados de
forma intensiva, realizando entrevistas personales.

v' Hansen, Hurwitz & Madow, 1953, p. 483; v' Rao & Molina, 2015
20
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PRIMERA APLICACION DE REGRESION SINTETICA

Encuesta de Radio 1945:

® y; num. mediano de emisoras que escuchadas durante el dia
(entrevista personal) en el condado d, d =1,...,85. Se
consideran como las medianas verdaderas.

e corr(y,x) =0.70

® Regresién Lineal:
Yd =Po+ Pixd +eq, d=1,...,85.
® Estimadores indirectos para los 500-85 condados restantes:
~SYN _ . o o
y3™ =0.52+0.74x4 (Estimador sintético de regresion)

® No tiene en cuenta la posible heterogeneidad entre condados.

21
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ESTIMADORES SINTETICOS

Definicidn:
A partir de una encuesta, se obtiene un estimador insesgado para
un area grande; cuando esta estimacién se utiliza para calcular
estimaciones para subdreas bajo el supuesto de que las dreas
pequenas tienen las mismas caracteristicas que el area grande,
identificamos estas estimaciones como estimaciones sintéticas.

v’ Gonzilez (1973)

Ejemplo SIMPLE:
® Objetivo: Yy media del dominio d.
e Seasume: Yy =Y.
e Estimador sintético de Yy:

ST Z ¥,

22
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ESTIM. POST-ESTRATIFICADO SINTETICO

J post-estratos (j = 1,...,J) que se cruzan con los dominios.

Ng; tamafio poblacional del cruce entre el dominio d y el
post-estrato J.

Total del dominio d:

[l =

J
Ya=> NV
j=1

+— areai

N=N +N NG+,

Suposicién (modelo
implicito):

stratum 1
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ESTIMADOR POST-ESTRATIFICADO
SINTETICO

® Estimador post-estratificado sintético:
> SYN
Ya ZNCIJ i = Vij/ Ny

° \A/Jrj, I\A/ﬂ- estimadores directos fiables de Y ;, N ;.

® Se necesita homogeneidad dentro de cada post-estrato.

® Caso especial: Cuando y € {0, 1}, la proporcién del dominio
P4 es Yq/Ng, donde Ng = 371 Ny;.

® Estimador post-estratificado sintético de Py:

S YN _ Z Nd_/ P

24
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ECM DEL ESTIMADOR SINTETICO

® E| estimador post-estratificado sintético \A’C}SYN depende de los
estimadores directos \A/H/IVH para el post-estrato j. Por
tanto, la varianza bajo el disefio de los estimadores sintéticos
es pequena en relacion a la de los estimadores directos para
un dominio pequefio.

® Pero los estimadores sintéticos dependen en gran medida de
las hipdtesis de homogenidad y pueden tener un sesgo grande
cuando no sean ciertas.

® Por tanto, como medida de error, conviene dar el error
cuadratico medio (ECM), que incluye sesgo y varianza.

25
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ESTIMADOR del ECM

e ECM aproximado:

ECMd(f/dSYN) ~ Ed(YsYN YDIR) Vd(YfIR)
® ECM estimado:

ECM (YSYN) (YSYN \"/dDIR)2_ Vd(\A/(FIR)-

e ECMy(Y3YN) es aproximadamente insesgado pero inestable.

® Promedio sobre dominios: (v' Gonzdlez & Wakesberg, 1973)
1 1 1 &
ECM (YSYN) 5 @(Y[SYN_YZDIR)z_E Nigzv (YDIR)
(=1 /=1

® Limitacion: ECMQ(\_/;YN) es estable pero es igual para todas
las areas.

26
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ESTIMADOR SINTETICO

INDICADORES OBJETIVO:

® Para estimador sintético de regresidn, indicadores generales.
Para post-estratificados sintéticos, parametros aditivos.

REQUERIMIENTOS DE DATOS:

® Para el estimador sintético de regresidn, valores agregados de
p variables auxiliares a nivel de dominio.

® Para estimadores sintéticos post-estratificados, indicador de
post-estrato en la encuesta y tamanos poblacionales de cruces
entre post-estratos y dominios.

27
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ESTIMADOR SINTETICO

VENTAIJAS:

® Pueden tener una varianza muy pequena.

® Permiten estimar en areas no muestreadas.

28
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ESTIMADORES SINTETICOS

DESVENTAIJAS:

® No tienen en cuenta la posible heterogeneidad entre areas; por
tanto, pueden estar seriamente sesgados bajo el disefo.

¢ E| modelo debe verificarse cuidadosamente (por ejemplo,
mediante graficos de residuos y contrastes de significatividad
de la varianza de los efectos aleatorios).

® Sj se conoce el modelo, jno se usan los datos de la variable de
interés obtenidos de la encuestal

® No tienden al estimador directo al aumentar el tamano
muestral del dominio.

® No existen estimadores del ECM estables y distintos para cada
area.

® Es necesario realizar ajustes para que cumplan la propiedad
“benchmarking”.

20
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ESTIMADORES COMPUESTOS

Para equilibrar el sesgo de un estimador sintético y la inestabilidad
de un estimador directo para un dominio, tomar:

Vi =daVa+(1—0a)V3™N, 0<¢g<1.

¢ Estimador dependiente de tamaiio muestral (SSD): Para
un ¢ > 0 dado,

¢ . ]., Si NdZ(sNd;
T Ng/(6Ng), si Ng < 6Ng.

v' Drew, Singh & Choudhry (1982), SM 30
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ESTIMADOR DEPENDIENTE DEL TAMARNO
MUESTRAL (SSD)

® Bajo muestreo aleatorio simple (MAS) en la poblacién:

I(/d:Zdj:Nnd/n

JESq
o Ny insesgado: Ng = Er(Ny) = NE.(ng)/n. Entonces,
Ng > 6Ng < Nng/n > SNE(ng)/n < ng > 6Ex(ng).
® Peso del estimador SSD bajo MAS:

¢ _ { 1 si nyg Z 5Ed(nd);
I na/{0Edq(ng)} si  ng < dEq(ng)

31
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ESTIMADOR DEPENDIENTE DEL TAMARNO
MUESTRAL (SSD)

® Encuesta de Poblacién Activa canadiense: Se producen
estimaciones por divisiones censales con 6 =2/3. Para la
mayoria de las areas, 1 — ¢4 = 0; para otras dreas el peso
asignado a AdSYN estaba en torno a 0.1 pero nunca fue mayor
que 0.2.

® Se usa el mismo peso ¢4 para todas las variables y sin
importar las diferencias con respecto a la homogeneidad entre
areas.

32
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ESTIMADOR COMPUESTO OPTIMO

® Encontrar ¢¢ que minimice ECMd(\A/dC) = ¢y
® Peso 6ptimo depende de los verdaderos ECMs de \A/dSYN y Y,.

® Peso 6ptimo estimado:

g = ECMa(Y3"™) /(Y5 — Ya)?
® Limitacién: <ZA>§ es inestable.
[ ]

Peso éptimo estimado comiin (promedio sobre dreas):

D D
Qg* — Z ECMd(YgSYN)/Z(VgSYN . V£)2
/=1 /=1

D R D R R
o {z (9 ST w}
=1 /=1

® $* es estable pero es igual para todas las areas.
33
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BENCHMARKING

® Normalmente se dispone de un estimador directo fiable para
una regiéon A que contiene varias areas, YAD’R.

® | os estimadores indirectos de los totales de las dreas Yy
contenidas en dicha regién no tienen por qué sumar YAD’R.

® Ajuste de razén: \N/d estimador indirecto de Y, con
Y odea Yd F# YAD’R. Entonces, se toma el estimador

~ Ny — yDR
S5 o

deA

Yd —Yd

34
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ESTIMADORES SSD

INDICADORES OBIJETIVO:

® Pardmetros aditivos.

REQUERIMIENTOS DE DATOS:

® | os mismos que los estimadores directo y sintético que se
utilicen.

35
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ESTIMADORES SSD

VENTAIJAS:

® Tenderdn a tener menor varianza bajo el disefio que el
estimador directo y menor sesgo que el sintético.

DESVENTAIJAS:

® Si el tamafio muestral del dominio (incluso siendo pequefio) no es
inferior al tamafo esperado, no se comparte informacién.

® E| peso del estimador sintético no depende de lo bien explicada que
esté la variable de interés por las variables auxiliares.

® No se pueden calcular para dominios no muestreados.

® No se dispone de estimadores del ECM bajo el disefio estables y
distintos para cada area.

® Necesitan reajuste para satisfacer la propiedad “benchmarking”.

36
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MODELO FAY-HERRIOT

(i) Modelo que enlaza las areas:

dg =xy8+uy, d=1,...,D
ug % (0,02), o2 desconocido
(ii) Modelo del muestreo:
6DR =544+ ey, d=1,...,D
ed g (0,%q), g = VW(S(?IRMd) conocido Vd

uq y eq independientes
(iii) Modelo combinado: Modelo lineal mixto
85’R:xg,6+ud+ed, d=1,...,D

v’ Fay & Herriot (1979), JASA
37
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BLUP BAJO EL MODELO FAY-HERRIOT

Best linear unbiased predictor (BLUP)

Bajo el modelo combinado (iii) con d4 = x};3 + ug, el estimador
lineal 64y = b+ alélD’R + -+ aDcSB’R que es solucién al problema:

MiN(ay, ap) ECM(dq) = E(0g — da)?
s.t. E(5d = 5d) =0
viene dado por
3P =, +

donde
D -1 p
B=p(7) = (Z ’YdXdX'd> > vaxad g™,
d=1 d=1
2 *DIR !5 Ug
iy = ig(02) = 74 (82" — x,3), = Cu
d = Gg(0y) = v4(04 aB),  vd 7+ g

29
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BLUP BAJO EL MODELO FAY-HERRIOT

Demostracion: Se demuestra un resultado mas general. Se
expresa el modelo (iii) en notacién matricial

y=X38+u+e,
donde
SPIR x} u el
y= , X= , U= , €=
S5R xp up ep

Matrices de covarianzas: V(u) = o2lp, V(e) = diag(vq).
Demostramos que el BLUP de un efectos mixto

p=2Lp+mu,
para vectores £ and m dados de dimensiones p x 1y D x 1, es
p=03+wmi, i=(i,..., dp).
30
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BLUP BAJO EL MODELO FAY-HERRIOT

e Predictor Lineal de = #'3 + m'u:
fi=a'y + b,

para un vector dado @ = (aq,...,ap)’ y escalar b.
Error de prediccion:

fi—p = a'y+b—€'B—m'u = a'XB+a'u+a’e+b—€'B—m'u.

fi insesgado bajo el modelo para p siy solosi E(fi — ) = 0.
Tomando esperanza del error de prediccién,

E(fi—p)=(a’X—£)8+b=0Y8<a'X=4¢, b=0.

® Sj ji es insesgado para y, entonces
ECM(ji) = V(ji—p) = V(d/y—m'u) = &’'Va+o2m'm—202a’m,
donde V = V(y) = o21p + diag(¢q).
40
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BLUP BAJO EL MODELO FAY-HERRIOT

Problema de minimizacion:

ming ECM(ji) = a/Va + o2m'm — 202a/m
s.t. aX=1~
Mediante el método de multiplicadores de Lagrange, se
obtiene:

a' =XV X)XV +e2m' VT [Ip — X(X'VIX) T IXV L

® Entonces, el BLUP de u es
iBtUP = o'y = £/3 + m'a2V Yy — XB) = €3 + m'ii.
—

u

® Para £ = x4 and m = (0/,_,,1,0,,_,)’, obtenemos

SBLUP _ 1 A | =~
0g =Xy + ig.

41
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BUENA PROPIEDAD DEL BLUP

El BLUP se puede expresar como

2
Oy

SELUP =7d 55”? +(1- ’yd)XQB, Yd = 2+ oy
u

e Composicién del estimador directo (55’”? y el estimador
“sintético de regresién” x,3.

® Da mayor peso a 55”R cuando la varianza muestral ¥4 es
pequefia small (05 fiable).

® Da mas peso al estimador sintético XQBN cuando ¥y es
grande (65'R no fiable) o o2 pequefio (x/,/3 fiable).

42
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BLUP EMPIRICO (EBLUP)

° SELUP depende de 02 a través de By Yd:

SBLUP __ $BLUP; 2
dq =0q4 (Uu)

® BLUP empirico (EBLUP) de d4: 52 estimador de o2,
BEBLUP = FBLUP(32), d =1,....D
e E| EBLUP se mantiene insesgado bajo el modelo, si:

v' La distributién de uy es simétrica.
v 67 par: G5(y) = 65(—y).
v

&2 invariante por traslaciones: 52(y + Xv) = 62(y) para todo

yy~.
43
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METODOS DE AJUSTE

v' Método de ajuste FH;
v Maxima Verosimilitud (ML);
v Méxima Verosimilitud Restringida/Residual (REML);

v" Método de momentos de Prasad-Rao.
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METODO DE AJUSTE FH

® Se verifica

0, {37 XA

SDIR ind 2 Z 2
5d ~ N(xijl@7o-u+¢d) = > NXD—p
d=1 Oy + ,(bd
® Método Fay-Herriot: Resolver iterativamente para o2 la

ecuaciéon

A ~ 2
D_ (58" — x,B(02)
o) =2 | 73+ ba )

d=1

=D —p.

Parar cuando las iteraciones convergen a una solucién &2
52 ) 3 A(a2
Tomar 65 = max(65,0) y B = B(55)-

No se requiere normalidad.
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OTROS METODOS DE AJUSTE

® Maxima verosimilitud: Habitualmente bajo normalidad
DIR 2
5d ~ N(X&B7O—u+wd)
Los estimadores ML son consistentes en ausencia de

normalidad (bajo ciertas condiciones de regularidad).

® Maxima verosimilitud restringida (REML): Reduce el
sesgo de los estimadores ML para tamafio muestral pequeio n
en comparacién con p.

® Método de Prasad-Rao: Método de momentos. Proporciona
buenos valores iniciales para algoritmos iterativos de ajuste.
(v' Prasad & Rao, 1990)
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ERROR CUADRATICO MEDIO

® Bajo normalidad de ug y e4, cuando D — oo,
ECM(36° ") = g1a(07) + g24(07) + &34(03) + o(D ),
donde

g1d(02) = vaba = O(1),

D —1

24(07) = (1—7a)°xy (Z 7dxdx£1> xg = O(D™1),
d=1

g3d(03) = (1—7a)*v40,2V(63) = O(D™?),

e V/(62) varianza asintética de 52: Depende del método de

estimacién usado para o2.

v’ Prasad & Rao (1990), JASA 47
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ERROR CUADRATICO MEDIO

Esquema de la demostracién (estimacién ML): Hemos
obtenido u = a’u, donde

o =0QX'V +2m'P, P=V7!-vIXQX'V
para Q = (X'V1X) ™ = (324 vaxaxy) *.
Reemplazando o’ y m’ = (0, _;,1,0,_,) en ECM(f1), y

observando que
PVP =P, PX =0p,

obtenemos que
ECM(35°%") = g14(03) + 824(03),
donde
g1a(02) = 7avd,

g4(07) (1= 7a)*x4 (D vaxaxly) ' xq.
d
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ERROR CUADRATICO MEDIO

® Descomposicién del ECM:

ECM(SS’BLUP) _ E(SEBLUP _ 5d)2
—  E($EBLUP _ §BLUP | FBLUP _ 5 2
— ECM(S?LUP) + E(SEBLUP _ SELUP)2
4 2E(3§BLUP _ SELUP)(SELUP _ 6d)

® Si 52 es par e invariante por translaciones, entonces bajo
normalidad

E(SEBLUP o ggLUP)(SOEI;LUP —64) = 0.
® Por tanto,
ECM((?EBLUP) _ ECM(S?LUP) + E(SEBLUP _ SELUP)%

v’ Kackar & Harville (1984), JASA 49



INTRODUCCION EST. INDIRECTOS MOD. NIVEL AREA M. UNIDAD METODO EB BINARIOS
0000000000000000 0OOOOOO000O0000000 0000000000000e00000000 DOOOOOO000 0OOOO0000000 VOO0

ERROR CUADRATICO MEDIO

® Expansién de Taylor de primer orden de 5:UF(52) en torno a
o2

cesLop  weoe . 008" 2 o

5d ~ 5d + 2 (Uu - Uu)‘
oo,

e Entonces,
2

(52 03)2 .

U

SEBLUP _ $BLUPY2 0§+
E(5 —9 ~E || —55
(0g d ) do?2
* Reemplazamos y = X3 + v en §5LUP
ggLUP =0B+bv, v=u+e~ N(0p,V).

Entonces,

=aly:

aggLUP B ib,v
do2 Qo2
50
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ERROR CUADRATICO MEDIO

® Por tanto,

R N ob’ b\’ .
e(igoeor —5500r e~ £ [P (20 37— 2]

® 52 estimador ML de o2.

® Por la expansién de primer orden de Taylor de
s(62) = Olog L(62)/052 en el valor 02, y sabiendo que
0s(a2) /00> A —Z(0?), donde Z(02) es la informacién de
Fisher,

oum oy +I(0g)s(o7)
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ERROR CUADRATICO MEDIO

® Funcién de log-verosimilitud:

D
log L(03) = — = log(2r) — 3 log [V| 2 (y~XB)V"X(y - XB).

e Score (gradiente de la log-verosimilitud):

s(02) = —5tr(V) — (y ~ XB)V 3y — XB)
N—— N——

v/ v

® |nformacidn de Fisher:

I(0?) = —%tr(V‘z).

u

® Finalmente, usando las expresiones del score y la inf. de
Fisher, se calcula la siguiente esperanza teniendo en cuenta la
normalidad de v:

A ~ ob’ ob
E((SEBLUP _55LUP) ~E [802 (a 2) 1-2( ) 2(0,5):| )



INTRODUCCION EST. INDIRECTOS MOD. NIVEL AREA M. UNIDAD METODO EB BINARIOS
0000000000000000 0OOOOOO00000000000 0000000000000000e00000 DOOOOOO000 0OOOO0000000 OO0V

ERROR CUADRATICO MEDIO

® Se cumple que

Elg14(63)] ~ g14(03) — g34(03),
Elg2d(62)] ~ &24(03),  Elgza(82)] = g3a(07).

® El estimador del ECM cuando 42 se obtiene mediante REML:
mse(36° ) = £14(87) + 824(87) + 2834(67)

Es casi insesgado:

E [mse(afBLUP) — ECM(8EBLUP) 4 o(D™ 1)

Cuando 63 se obtiene por FH o ML, se debe afadir un

término debido al sesgo en 62.

v’ Prasad & Rao (1990), JASA 53
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EBLUP BAJO EL MODELO FH

INDICADORES OBIJETIVO:

® |ndicadores generales.

REQUERIMIENTOS DE DATOS:

® Valores agregados de p variables auxiliares A nivel de dominio.
® Tamanos poblacionales de los dominios.
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EBLUP BAJO EL MODELO FH

VENTAIJAS:

® Requiere solo informacién auxiliar a nivel de area, que esta
disponible facilmente y evita problemas de confidencialidad.

® Hace uso de los pesos muestrales mientras v4 # 0. Es
consistente bajo el diseno cuando ny — oo. Por tanto, se vera
menos afectado por muestreo informativo.

® Asigna automdticamente mayor peso al estimador sintético
de regresién cuando el tamano muestral del area es pequeio.

® A menudo es mas eficiente que el estimador directo.

® Tiene en cuenta la heterogeneidad no explicada entre areas si
Y4 7 0.
55
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EBLUP BAJO EL MODELO FH

VENTAIJAS:

® Tiende al estimador directo cuando aumenta el tamano
muestral del dominio (¢4 decrece).

® Para estimadores directos lineales, el T. Central del Limite
garantiza una minima bondad de ajuste en las dreas de
tamafios muestrales no demasiado pequeiios. Atipicos aislados
tienen efecto pequeno debido a la agregacion.

® E| estimador del ECM de Prasad-Rao es un estimador estable
del ECM bajo el disefio y es insesgado bajo el diseno
cuando se promedia a lo largo de un ndmero grande de &reas.

® Para estimar en dominios no muestreados, se puede usar el
componente sintético (74 = 0).
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EBLUP BAJO EL MODELO FH

DESVENTAIJAS:

® Pérdida de informacidn en el proceso de agregacion de las
variables auxiliares.

¢ Solo D (tipicamente << n) observaciones para ajustar el
modelo. En nuestros ejemplos, ganacias pequeias respecto a
los estimadores directos.

® Es necesario diagnosticar del modelo. Probleams potenciales
de linealidad para pardmetros no lineales.

® Se requiere estimacién preliminar de las varianzas muestrales
4. iEl mismo problema de dreas pequeiias!

57



INTRODUCCION EST. INDIRECTOS MOD. NIVEL AREA M. UNIDAD METODO EB BINARIOS
0000000000000000 0OOOOOO00000000000 000000000000000000000e DOOOOOO000 0OOOO0000000 0OODO00O!

EBLUP BAJO EL MODELO FH

DESVENTAIJAS:

® Si queremos estimar varios indicadores definidos en términos
de la misma variable objetivo, se requiere encontrar un buen
modelo para cada indicador.

® | os estimadores no se pueden desagregar para subdominios.

® |a férmula del estimador de ECM de Prasad-Rao es correcta
bajo el modelo con normalidad, pero no es insesgado bajo el
disefio para el ECM en un drea concreta).

® Se requiere reajuste para satisfacer la propiedad
“benchmarking” .
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MODELO CON ERRORES ANIDADOS

® yg; valor de la variable objetivo para la unidad j dentro del
area d

® 4 efecto aleatorio del area d
® Modelo de regresién lineal con errores anidados:

ydj:xﬁ,jﬁ+ud+edj, j=1...,Nyg, d=1,....D
ug % N(0,02), eq % N(O,02)
® Modelo en notacién matricial:
y=XB+Zu+e
® Esperanza y varianza marginales:
E(y)=XB, V(y)=02ZZ +2ly
v’ Battese, Harter & Fuller (1988), JASA 59
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BLUP: MODELO LINEAL GENERAL

Modelo lineal mas general:

® y=(y1,...,yn)" vector poblacional (aleatorio)

Modelo lineal:

E(y)=XB, V(y)=V

Descomposicidn en partes muestreada y no muestreada

yS XS VSS VSI’ >
g s X = B V -
Y (y) <X> (vrs Vv,

Parametro lineal objetivo:

§=a'y =alys +ay,
60
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BLUP: MODELO LINEAL GENERAL

Mejor predictor lineal insesgado (BLUP): V conocido

El predictor lineal 6= a’ys que es solucién del problema:

Mingern ECM(8) = E(6 — 6)2

s.a. E(0—0)=0
viene dado por :
§BLUP _ alys + a/fnyLUP)

donde

GELUP — X, 3 + V.V (ys — Xs0),
B = (XVZIX) XV,

S Sss

v" Royall (1970), Biometrika 61
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BLUP BAJO MOD. ERRORES ANIDADOS

® BLUP de 6§ = Y4 Bajo el modelo con errores anidados:

f/fLUP Z)’dj + Zy‘gLUP :

JESd JEra

donde
)"/gLUP = x'djfl + {ig, B estimador WLS de 3,
g = Va(Vd — %4B), 1a = 05/ (07 + 02/ na)-
e Cuando ng/Ny ~ 0,
Y7 & g {Yd +(Xg — *d)/B} + (1 —a)X,8

* Composicién entre estimadores “survey regression”
Va + (Xg — Xg)’ B y sintético de regresién X’ ,8
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BLUP EMPIRICO (EBLUP)

® BLUP depende de 8 = (02, 52)’ desconocido:

SBLUP — SBLUP(O).

e EBLUP de §: O = (62, 62) estimador de 6
FEBLUP _ §BLUP (4

e Estimadores de 02 y 02:

v Método de Henderson Il (método de momentos);
v ML;
v" REML.
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EBLUP BAJO MODELO A NIVEL UNIDAD

INDICADORES OBIJETIVO:

® Medias de totales de la variable de interés.

REQUERIMIENTOS DE DATOS:

® Microdatos para las p variables auxiliares en la encuesta.
® Indicador del dominio en la encuesta.

® Medias poblacionales de las p variables auxiliares para los
dominios.
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EBLUP BAJO MODELO A NIVEL UNIDAD

VENTAJAS:

® Usa informacién auxiliar a nivel unidad, que es mas detallada
que la informacién a nivel de area.

e E| tamafio total muestral es tipicamente grande (n >> D),
asi que se comparte mucha informacién.

® |ncorpora heterogeneidad no explicada entre areas.

® Es necesario diagnosticar el modelo.

® No requiere disponer de las varianzas muestrales de los
estimadores directos.

® Automdticamente comparte informacidn entre areas (“borrows
strength” ) cuando el tamafio muestral del dominio es pequefio
y tiende al estimador “survey-regression” cuando el tamano
muestral del dominio aumenta.
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EBLUP BAJO MODELO A NIVEL UNIDAD

VENTAIJAS:

® Los estimadores se pueden desagregar para subdreas (sin
efecto de sub-area) o incluso para individuos.

¢ Estimadores insesgados bajo el modelo (no es necesaria
normalidad pero si simetria).

e Estimadores del ECM con sesgo despreciable bajo el modelo
con normalidad.

® Estimador del ECM bajo el modelo estable para el ECM bajo
el disefno e insesgado bajo el disefio cuando se promedia para
muchos dominios.

® Para estimar en areas no muestreadas, se puede usasr la parte
sintética.
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EBLUP BAJO MODELO A NIVEL UNIDAD

DESVENTAIJAS:

® |nformacién auxiliar a nivel unidad de dificil acceso por
temas de confidencialidad.

® Solo se aplica a pardmetros lineales.

® No se usan los pesos muestrales, de modo que puede ser
sesgado bajo el disefno, especialmente bajo muestreo
informativo.

® Se puede ver afectado por datos anémalos y/o falta de
normalidad.
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EBLUP BAJO MODELO A NIVEL UNIDAD

DESVENTAIJAS:

e Sensible a desviaciones del modelo. Diagndstico del modelo
muy importante.

e Estimador del ECM por la férmula de Prasad-Rao correcto
bajo el modelo con normalidad. (no insesgado bajo el disefio
para el MSE bajo el disefio en un drea concreta).

® Es necesario un reajuste para satisfacer la propiedad
“benchmarking” .
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MEJOR PREDICTOR

Mejor predictor (BP)

Consideramos § = h(y), no necesariamente lineal. El predictor
6 = g(ys) que minimiza ECM(0) = E(d — 0)? es

SBP
0 = EYr((S’yS)
Demostracién: Definimos 6° = Ey, (d|ys). Observemos que

ECM(8) = E,{(6 — 6°)*} + 2 £,{(5 — 6°)(6° — )} + E,{(¢° — 6)}.

El dltimo término no depende de 4. Para el segundo término,
EAG - -0} = B [E {(-)0" =0y
= B, |- {0~ E,0ly)}| =0

El minimo de E,{(§ — d°)} se alcanza para 657 = 6° = E, (d]ys). 69
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MEJOR ESTIMADOR EMPIRICO

® El mejor predictor es insesgado:
Ey,(357) = Ey, {Ey, (6lys)} = Ey(9).

® Para un modelo lineal con E(y) = XBy V(y) = V(0) con 3
y 6 desconocidos, el BP depende de By 6:

SBP — SBP(57 9)
* Mejor predictor empirico (EBP): @ estimador de 6. Entonces
SEBP _ 5EP (3(6), ).
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MEJOR PREDICTOR: PARAMETRO LINEAL

® (Caso particular: Consideramos un parametro lineal
0= a,y = alsys + alryr
Si y se distribuye como una normal, entonces el BP es
6P = alys +a§r",

donde
yrBP = Xr:B + Vrsvs_sl(YS - XSB)

e Usando B para estimar 3, el EBP coincide con el EBLUP.
71
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METODO EB: INDICADORES DE POBREZA

® |ndicador de pobreza para el dominio d:

Ny a
1 zZ — Edj
Fog = EZ <Z I(Ejj<z), d=1,...,D.

Jj=1

® La distribucién de la renta E4; es marcadamente asimétrica

por la derecha.
¢ Seleccionamos una transformacién T() tal que la distribucién

de yq4j = T(Eg4j) sea aprox. normal.
* Hipétesis: yq4 = T(Egj) satisface el modelo con errores
anidados

- »
Yaj = XgiB+ ug + eqj,  ug ~ N(0,03), eqi ~ N(0,02).
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METODO EB: INDICADORES DE POBREZA

® Vector para drea d: yg = (Ya1,---,Yan,)
® |ndicador de pobreza en términos de yq:

Ny 2 - Ty, )¢
Fud = /\Z; {Tz(ydj)} HT () < 2} = ha(ya)-

® Particién de y4 en muestra y no-muestra: yg = (Y, ¥y,)
® Mejor predictor:

'Echf = Eydr [Fad|)’ds] .

v’ Molina and Rao (2010), CJS 73
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METODO EB
® Distribucién de y4, dado yg4s bajo el modelo con errores
anidados:
Ydr|yds ~ N(Hdr|savdr|s)a
donde

Ndr\s = Xdrﬁ + '7d()7ds - )_(/(Isﬁ)lNdfnda
Vdr\s = 012;(1 - ’Yd)]'Nd_nd]‘/Ndfnd + JzINd—nw

V4 = 0y(0g +o2/ng) "
® La distribucién condicionada depende de 8 = (3,02, 02)’.
® Mejor predictor empirico (EB): Reemplazamos un
estimador consistente 6 de 6

FEEP = FED(6).
v’ Molina & Rao (2010), CJS 74



INTRODUCCION EST. INDIRECTOS MOD. NIVEL AREA M. UNIDAD METODO EB BINARIOS
0000000000000000 0000000000000 00000 0O0VO00000000000000000 0000000000 OO0O00e00000 0OO0O00O!

APROXIMACION MONTE CARLO

(a) Generar L vectores fuera de muestra y((jr), ¢=1,...,Ldela
distribucién condicionada (estimada) de yd,|yds.

(b) Unir los elementos de la muestra para formar un vector censal
(e) = (yds,y((fr)) {=1,...,L
(c) Calcular el indicador de interés con cada vector poblacional
F(d) = ha(y (E)) £=1,...,L. Después tomar el promedio para
las L simulaciones Monte Carlo:

EBP Z F

(d) ElI ECM se puede estimar mediante bootstrap paramétrico.

v’ Molina & Rao (2010), CJS 75
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ECM POR BOOTSTRAP PARAMETRICO

(i) Generar B vectores poblacionales (censos) bootstrap a partir
del modelo ajustado

y*(b) = (yi(b), .. .,y*D(b)), b=1,...,B.
(ii) Calcular los verdaderos parametros bootstrap

50 = h(y;‘;(b)) b=1,...,B.

(iii) Con la parte de la muestra y = (yl(b), . ,yE(sb)) del
vector poblacional y*(®), calcular los estimadores EB:
JEBP) p—1,....B.

(iv) Estimador naive del ECM por bootstrap paramétrico:

mse,( 6EBP B Z( §EPFHP) d(b))2

V. Gonz3lez-Manteica et al. (2008) JSCS 76
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EB BAJO EL MODELO A NIVEL UNIDAD

INDICADORES OBJETIVO:

® Indicadores generales definidos en términos de una variable
continua (ej. renta) que serd modelizada.

REQUERIMIENTOS DE DATOS:

® Microdatos de las p variables auxiliares en la encuesta.
® Indicador de dominio en la encuesta.

® Microdatos de las p variables auxiliares para todas las
unidades de la poblacién (censo o registro administrativo).

7
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EB BAJO EL MODELO A NIVEL UNIDAD

VENTAIJAS:

® Se usa informacién auxiliar a nivel de unidad, que es mds
detallada que la informacién a nivel de area.

® E| tamafio muestral total es habitualmente muy grande
(n >> D), por lo que se comparte mucha informacién.

® |ncorpora heterogeneidad no explicada entre areas.

® Permite estimar pardmetros no lineales generales h(y), donde
y se distribuye seglin una normal.

78
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EB BAJO EL MODELO A NIVEL UNIDAD

DESVENTAJAS:

® Se generan censos completos. Por tanto, se pueden estimar varios
indicadores a partir del mismo modelo.

® Estimadores aprox. insesgados y 6ptimos bajo el modelo con
normalidad.

® Las estimaciones se pueden desagregar en cualquier subdominio (sin
efecto de subdominio), incluso a nivel de unidad.

® Estimadores del ECM bajo el modelo con sesgo despreciable bajo
normalidad, para pardmetros lineales.

® Estimador del ECM bajo el modelo es estable para el ECM bajo el
disefio cuando se promedia para muchos dominios, para pardmetros
lineales.
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EB BAJO EL MODELO A NIVEL UNIDAD

DESVENTAIJAS:

® |nformacién auxiliar para cada unidad de la poblacién
(censo/registro) no es facilmente accesible.

® Computacionalmente intensivo.
® No utiliza los pesos de muestreo, por lo que puede ser

sesgado bajo el diseno, especialmente bajo muestreo
informativo.

e Sensible a desviaciones del modelo. Es muy importante
encontrar la transformacién correcta de la variable y la
diagnosis del modelo.

® | os estimadores del ECM por bootstrap son
computacionalmente intensivos.

80
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MODELQOS LINEALES GENERALIZADOS

® y4i € {0,1}, donde 1=presencia de la caracteristica de interés,
O=ausencia.

® Parametros objetivo: proporciones de individuos con dicha
caracteristica,

® Modelo logistico mixto:

ydj|ud ir:\ch. Bern(pdj), j:].,...,Nd, d:].,...,D,
_exp(xy;B + ug)
1+ exp(xB + ug)’

id
Pdj ug ~ N(0, 7).

v’ Gonzalez-Manteiga et al. (2007), CSDA 81
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ESTIMADORES DE AREAS PEQUENAS

® Mejor predictor:

Z}/dj ZE(de’yds ) d:177D

JESdq JErd

® La esperanza de E(yqj|yds) no se puede calcular
analiticamente: es necesario utilizar métodos de simulacién
para las aproximaciones (ej. Laplace o Monte Carlo).

® Estimadores simples tipo plug-in:

APl APl
Pa =g | 2ova+ 2 pg ), d=1....D.

J€ESq J€Erg
o pP’“g = exp(xiﬁB + dq)/{1+ exp(xi,j,é + 04)} prediccién de
Ias probabilidades mediante el ajuste del GLMM.
82
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METODOS DE AJUSTE

® Verosimilitud muestral:
) = [ fveu)du= [ fiyclu)fa(u)du
RD RD

® No se puede obtener una expresion analitica para la
verosimilitud.

® ML: Se requieren aproximaciones (ej. Laplace) o métodos
numéricos para maximizar la verosimilitud.

83
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CUASI-VEROSIMILITUD PENALIZADA (PQL)
+ML APROXIMADA

(A) o2 conocida: algoritmo PQL (v Breslow & Clayton, 1993):

(8,8) = argmax(g,u)f(ys, u)
(B) By u conocido: ML aproximado

62 = argmax,2f;(ys)

fi verosimitud normal multivariante de un modelo lineal mixto
que aproxima el GLMM.

v’ Schall (1991) v Saei & Chambers (2003) 84
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CUASI-VEROSIMILITUD PENALIZADA (PQL)
+ML APROXIMADA

Proporciona estimadores que pueden ser inconsistentes.

El ECM se puede estimar por bootstrap paramétrico.

Ajuste GLMM + EBP + ECM bootstrap: altamente intensivo
a nivel computacional. Inviable para poblaciones grandes.

Ajuste GLMM + Estimador plug-in + ECM bootstrap: mas
viable pero no éptimo.
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EXTENSION: VARIAS CATEGORIAS

® Y, total de desempleados en drea d;
® Y, total de empleados en drea d;

® R, tasa de desempleados en drea d,;

Ya1

= —-— x 100.
Ya1 + Ya2

R4

86
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MODELO LOGISTICO MIXTO MULTINOMIAL

® Tres categorias excluyentes:
ydj1 1=desempleados, O=otros
ydj2 1=empleados, O=otros
yqj3 1=inactivo, O=otros

® Modelo Multivariante:
(Ydj1s Ydj2, Ydj3) ~ Multin(mg;; pgj1, Pdj2, Pdj3)

Desempleado :  log(pgj1/pPdjz) = x’djlﬂl + ug1

Empleado : log(Pdj2/Pdj3) = Xy;B2 + Ud2

e Efectos aleatorios especificos para las categorias:
u= (udl, udg)/ ~ N2(0, Zu).
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MODELO LOGISTICO MIXTO MULTINOMIAL

e Estimadores plug-in de totales de desempleados/empleados:
PI APl
6= D vt D Py k=12
JEsyg JEryg
® Estimadores plug-in de tasas de desempleados:

YP/Ug

=91 100.

R;’lug
YPlug 4y ;‘zlug

v’ Molina, Saei & Lombardia (2007), JRSSA 88
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MODELOS PARA DATOS BINARIOS

INDICADORES OBJETIVO:

® Proporciones o totales de una variable binaria (ej. acceso o no
a cierto servicio o comodidad).

REQUERIMIENTOS DE DATOS:

® Microdatos para las p variables auxiliares en la encuesta.
® Indicador del dominio en la encuesta.

® Microdatos de las p variables auxiliares para todas las
unidades poblacionales (censo o registro administrativo).
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MODELOS PARA DATOS BINARIOS

VENTAIJAS:

e Utiliza informacién auxiliar de nivel de unidad, que es mas
detallada que la informaciéon de nivel de area.

® El tamaiio total de la muestra es tipicamente muy grande
(n >> D), por lo que se comparte mucha informacién.

® |ncorpora heterogeneidad no explicada entre areas.
® EB es aprox. insesgado y 6ptimo bajo el modelo.

® | as estimaciones se pueden desagregar para cualquier
subdominio (sin efecto de subdominio), incluso a nivel de
unidad.
® Para estimar en dreas no muestreadas, se puede usar la parte
sintética.
90



INTRODUCCION EST. INDIRECTOS MOD. NIVEL AREA M. UNIDAD METODO EB BINARIOS
0000000000000000 0000000000000 00000 0OO0VOO0000000000000000 0000000000 000000000000 OO0

MODELOS PARA DATOS BINARIOS

DESVENTAIJAS:
® Informacién auxiliar para cada unidad de poblacién (censo/registro)
no es facilmente accesible.
® Computacionalmente intensivo.

® No utiliza los pesos del muestreo, por lo que puede ser sergado
bajo el disefio, especialmente bajo el muestreo informativo.

e Sensible a desviaciones del modelo. Encontrar la transformacién
correcta de la variable y la diagnosis de modelo muy importante.

® Estimador EB (al contrario que el tipo plug-in) es
computacionalmente intensivo.

® Estimadores del ECM por bootstrap son computacionalmente
intensivos (alin mds para estimadores EB).

® Es necesario un reajuste para que verifiquen la propiedad
“benchmarking” .
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SOFTWARE

El paquete R sae contiene funciones:

Estimadores directos: direct.
Estimadores tradicionales indirectos: pssynt, ssd.
Modelo FH: eblupFH, mseFH.

Modelo FH espacial: eblupSFH, mseSFH, pbmseSFH,
npbmseSFH.

Modelo FH espacio-temporal: eblupSTFH, pbmseSTFH.
Modelo con errores anidados: eblupBHF, pbmseBHF.

Método EB bajo modelo con errores anidados: ebBHF,
pbmseebBHF.

Conjuntos de datos y ejemplos.

v Molina & Marhuenda (2015), The R Journal 92
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RESUMEN

(a) Medidas preventivas sobre el disefio muestral pueden reducir
significativamente la necesidad de estimaciones indirectas.

(b) Informacién auxiliar de calidad relacionada con la variable de interés
juega un papel crucial en la estimacién basada en modelos. Es
necesario facilitar el acceso a la informacién auxiliar mediante
coordinacion y cooperacién entre instituciones.

(c) La validacién del modelo es crucial. También son deseables estudios
de evaluacién externa.

(d) Los modelos de nivel de drea tienen mayor alcance que los modelos
de nivel de unidad debido a que la informacién auxiliar a nivel de
area es mas facilmente accesible. Pero la necesidad de conocer las
varianzas muestrales de los estimadores directos es restrictiva. Se
necesita mas investigacion para obtener buenas aproximaciones a
dichas varianzas muestrales. Los modelos a nivel de unidad pueden
ganar mucha mas eficiencia si se dispone de los datos necesarios.
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