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DESIGN VERSUS MODEL BASED INFERENCE

ELEMENT UNDER A MODEL UNDER THE DESIGN

Population y ~ Py Uu=1{1,...,N},
Y=1{n, .y}
Sample y=01--,¥n) = (i1, ,in) € Sr,
yiiid. asy = Virs -5 Yin)
Probab. distrib. Py(y) 7r(s)
Parameter 6 (e.g., 0 =Ep,(YV)) 0= h(y1,.-.,yn)
Estimator O(y) 0(s)

Sampling design: (S;, Pr), S; C P(U) set of samples, Py
probability distribution over S, satisfying P.(s) > 0, Vs € S, and
all units j € U are contained in some sample s € 5. 3
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DESIGN-BASED INFERENCE

U finite population of size N.

® yi,...,yN measurements at the population units (fixed).

Target quantity:

d=h(y1,...,yn)-

® Example: population mean

o1 N
Y = Zyj.
j=1

® s random sample of size n drawn from the population U
according to a given design.

=

r = U — s non-sample (size N — n).
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HORVITZ-THOMPSON ESTIMATOR

m; probability of inclusion of unit j in the sample.

d;j = 1/m; sampling weight for unit j.

Horvitz-Thompson (HT) estimator of mean:
2 1 Yj 1
Y = 5 Z TN Z d;yj
JES JEs
Design variance:
1 ; Yi ¥
y i Yk
Ve(Y) = 25 > ) (mjue — mjme) 2225,
=1 k=1 T Tk

7j k joint inclusion probability for units j and k.

v’ Hansen, Hurwitz & Madow (1953)

000000000000 00
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DESIGN VARIANCE

® Design-unbiased variance estimator:

7er_7rj7TkYJ}/k
szz wiw
jEs j€s J k

~<|>

v’ Sérndal, Swensson and Wretman (1992), equation (5.8.5)

® Under the approximation 7 x & 7k, j # k,

(V)= 5 3 () B = a2

JEs JEs
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EXAMPLE: FGT POVERTY INDICATORS

® FE; welfare measure for individual j: for instance, equivalized
annual net income.
® z poverty line: Spanish Statistical Institute (INE) uses:
z = 0.6 x Median(E;).
e FGT family of poverty indicators

1L /z— EN\®
— J .
Fa—NE < > > I(Ej <z), a>0.

j=1
® o = 0 = Poverty incidence
® o =1 = Poverty gap
v Foster, Greer & Thornbecke (1984), Econometrica 7
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HORVITZ-THOMPSON ESTIMATOR

® Poverty indicator:

® HT estimator of Fy:
~ 1
Fo=5 ZdJFaj.
JES

® \ariance estimator:

~ o 1
Ve(Fa) = 52 D_ i(ds — DFE.
JjEs
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ADJUSTMENTS TO HT ESTIMATOR

® gj adjustment factor for design weight d, j € s.
® w; = d;g; adjusted weight, j € s.
® Adjusted HT estimator:

a1

Y& = N Z w;y;.

JEs
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EXAMPLE 1: RATIO HT ESTIMATOR

® HT estimator of the population size:
=>4

JEs
e Constant adjustment factor:
N .
g = Ik VjeEs
® Ratio HT estimator:
yr=Y.
N

10
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EXAMPLE 2: RATIO EST. WITH AUX. VARIABLE

® X known total of an auxiliary variable with population values:

X1yeeo 9y XN-
® HT estimator of X:
X =Y dyx.
jEs
® Adjustment factor:
X .
8 = ;, V_/ € S.
® Ratio estimator with auxiliary variable X:
grc_ 9 X
X

The Ratio HT estimator is obtained taking x; =1, Vj € U.
11
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EXAMPLE 3: CALIBRATION ESTIMATOR

® p auxiliary variables with known population totals
Xk, k:].,...,p.

® ldea: Find weights w;, j € s, which minimize the X2 distance

- a)’
min ZJTJJ
JES
S.t. ZWJ'XJ'k:Xk,k:].,...,p.
jEs

¢ Solution: w; = d;gj, where g; =1+ xﬁ"l(X — )A()

Xj = (le,...,xjp)', X = (Xl,...,Xp)’, T= Zdjxjx}.
jEs

v Deville and Sarndal (1992) 12

BIl
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EXAMPLE 3: CALIBRATION ESTIMATOR

® Linear regression model:
yi=x;8+¢e, E(eg)=0, E(ej2) =02, j=1,...,N.

® Regression estimator:

I
Jj€s
® Generalized regression (GREG) estimator:
YA Y 4 (X - X)B.
® |t coincides with calibration estimator!

v Deville and Sarndal (1992) 13
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DOMAIN/AREA ESTIMATION

U partitioned into D domains Uy, ..

® s, sample of size ngy drawn from Uy.

Total sample size n = 25:1 ny.

., Up of sizes Ny, ...

® ry = Uy — sq4 sample complement, of size Ny — ngy.

UNIT-LEVEL MODEL EB METHOD BIl

000000000000 00

Np.

Example: Survey on Income and Living Conditions 2006

Total sample size: n = 34,389 persons.
Summary provincex gender sample sizes:

(Barcelona,F)

(Cérdoba,F)

(Tarragona,M)

(Soria,F)

1483

230

129

17

14
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TRADITIONAL DIRECT ESTIMATORS

® Target quantity:
6d = ha({yjiJj € Ug}).

Example: mean of d-th domain

ZYJ

JEUd

Direct estimator: Uses only area-specific sample data.
Example: HT estimator of Yd,

O

J€Esq

Variance estimator: Under 7Tj k =T, J F K,

Vr(YPIR) = Zd(d ~ 1)y,
JESd
10
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DIRECT ESTIMATORS

TARGET INDICATORS:

® Additive in the individual observations.

DATA REQUIREMENTS:

® Final design weights d;, j € sq of sample units in the area.

® For the HT estimator of the domain mean and for the Hajek
estimator of the total, domain population count N,.

16
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DIRECT ESTIMATORS

ADVANTAGES:

® No model assumptions (nonparametric).

® Sampling weights can be used = Approx. design-unbiased
and design-consistent as ng increases.

e Additivity (Benchmarking property):
D
>DIR _ \/DIR
> v - yon
d=1

DISADVANTAGES:

. V,,(\A/f’R) 1 as ng |. Very inefficient for small domains.

® They cannot be calculated for non-sampled areas (ny = 0).
17
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LIMITS OF DISAGGREGATION OF DIRECT
ESTIMATORS

RECOMMENDATIONS:

(i) Use direct estimators at the national level and for
disaggregates with CV under a specified limit for all the areas.

(ii) For further disaggregations, use indirect estimators in the
areas with relative absolute bias below a given limit.

(iii) For areas where indirect estimators exceed the bias limit, do
not produce estimates. It is always possible to modify the
survey sample size allocation so as to have a minimum
number of observations in each area.

18
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INDIRECT ESTIMATORS

¢ Indirect estimator: It borrows strength from other areas by
making some kind of homogeneity assumption across areas
(model with common parameters).

19
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FIRST APPLICATION OF SYNTHETIC
REGRESSION

1945 Radio Listening Survey:
® Target: to estimate the median num. of radio stations heard
during the day in 500 U.S. counties.

® Mail survey: From each of 500 counties, 1000 families
sampled and sent mailed questionnaire. Response rate only
20% and incomplete coverage.

® x4 median no. of stations heard during day (mail survey) in
the d-th county, for d = 1,...,500. Biased due to
nonresponse and incomplete coverage.

® |ntensive interview survey of 85 counties: Probability sample
of 85 counties subsampled and subject to personal interviews.

V' Hansen, Hurwitz & Madow, 1953, p. 483; v' Rao, 2003 20
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FIRST APPLICATION OF SYNTHETIC
REGRESSION

1945 Radio Listening Survey:

® y, median no. of stations heard during day (interview) in the
d-th sample county, for d = 1,...,85. Considered as true
county medians.

e corr(y,x) = 0,70

® |inear Regression:
Ye=DPo+Pi1xq+e, d=1,...,85.
® Indirect estimators for the 500-85 non-sampled counties:
ngN = 0,524 0,74x4. (Regression synthetic estimators)

® |t does not account for between-county heterogeneity.
21
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SYNTHETIC ESTIMATORS

Definition:

An unbiased estimator is obtained from a sample survey for a large
area; when this estimate is used to derive estimates for subareas
under the assumption that the small areas have the same
characteristics as the large area, we identify these estimates as
synthetic estimates. v’ Gonzidlez (1973)

SIMPLE EXAMPLE:
e Target: Y,y mean of domain d.
e Assumption: Yy = Y.
e Synthetic estimator of Yy:

ST _ .

22
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POST-STRATIFIED SYNTHETIC ESTIMATOR

J post-strata (j = 1,...,J) cut across the domains.

Ng; known count in the intersection of domain d and
post-stratum j.

® Total of domain d:
J
— Ny
— . . v
Yd - Z NdJ Ydj - +— areai
Jj=1 N=N N NG N,
e Assumption (implicit
mOdeI) stratum 1

”s Yoy = Yij = Yiy/Nyj, Vd, j
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POST-STRATIFIED SYNTHETIC ESTIMATOR

® Post-stratified synthetic estimator:
> SYN
Ya Z Ny VE, = Vij/Nay.
. \A’H, N+j reliable direct estimators of Y, ;, N_;.
® Need homogeneity within each post-stratum.
® Special case: When y € {0,1}, domain proportion Py is
J
Yd/Nd, where Nd = Zj:l Ndj-
® Synthetic estimator of Py:

S YN Z Nd_/ b fj

24
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MSE OF SYNTHETIC ESTIMATOR

® Synthetic estimator y,dsy/\/ depends on direct estimators

\A’H//\AIH for post-stratum j. Hence, design variance of
synthetic estimators small in comparison with that of the
direct estimator for a small domain.

® But synthetic estimators depend on strong assumptions and
hence may be biased when the assumptions are not true.

® Hence, full MSE (accounting for bias and variance) needs to
be estimated.

25
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MSE ESTIMATOR

® Approximate MSE:

MSE4(Y7™) ~ Eg(Y3"N — YPR)? — Vy(YP'R)

Estimated MSE:

M"SE (YSYN) (YSYN YdDIR)2 o Vd(\’}dDIR).

° MASEd(\A/‘fYN) is approximately unbiased but unstable.
® Average over domains: (v' Gonzdlez and Wakesberg, 1973)

1 D 1 1 D 1

< SYN v SYN DIR DIR

MSE, (Y, — E —Ng (Y; Y — E —Ng Y
(=1 /=1

® Limitation: MASEa(\Q/jy’V) is stable but not area-specific.

26
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SYNTHETIC ESTIMATORS

TARGET INDICATORS:

® For regression-synthetic estimator, general indicators. For
post-stratified synthetic, additive parameters.

DATA REQUIREMENTS:

® For regression-synthetic estimator, aggregated values of p
auxiliary variables at the domain level.
® For post-stratified synthetic estimators, post-stratum indicator
in the survey and popn. sizes of crossings of poststrata and
domains.
27
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SYNTHETIC ESTIMATORS

ADVANTAGES:

® They can have pretty small variance.
® They allow us to estimate in non-sampled areas.
28
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SYNTHETIC ESTIMATORS

DISADVANTAGES:

They do not account for between-area heterogeneity and can
thus be seriously design-biased.

The model needs to be consciously checked (e.g. by residual
plots and significance of area effect).

If the model is known, the survey data on the target variable
is not be used!

They do not tend to the direct estimator as the domain
sample size increases.

Stable and area-specific design MSE estimators are not
available.

Benchmarking adjustment is required.
29
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COMPOSITE ESTIMATORS

To balance the bias of a synthetic estimator and the instability of a
direct estimator for a domain, take:

VE =paVat+ (1 —0a)Ys™, 0< g <1

e Sample-size dependent estimator: For a given § > 0,

by = 1, if Ny > 6Ny;
4= Nd/(5Nd), if Nd < 6Ny.

v Drew, Singh and Choudhry (1982), SM 30
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SAMPLE-SIZE DEPENDENT (SSD) ESTIMATOR

® Under SRS in the population:

Nd:chj:Nnd/n

J€sd
e N, unbiased: Ny = EW(I\A/d) = NE;(ng)/n. Then,
Ny > 6Ng < Nng/n > SNE(ng)/n < ng > 6E(ng).
® Weight of SSD estimator under SRS:

p :{ 1 if ng > dEq(ng);
d ng/{6Eq4(ng)} i ng < 6E4(ng)

31
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SAMPLE-SIZE DEPENDENT (SSD) ESTIMATOR

e Canadian LFS: Estimates produced for Census Divisions with
d = 2/3. For most areas, 1 — ¢4 = 0; for other areas weight
attached to YfYN is about 0.1 but never larger than 0.2.

e All variables y use the same weight ¢4 regardless of the
differences with respect to between-area homogeneity.

32
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OPTIMAL COMPOSITE ESTIMATOR

* Find ¢y that minimizes MSE4(Y) = ¢
Optimal weight depends on true MSEs of Y5V and Y.
Estimated optimal weight:

g = MSEq(V3 ™) /(Y3 — Ya)?

Limitation: qu, is unstable.
Estimated optimal common weight (aggregated over areas):

D D
(Zg‘* Z MSEd(\_/KSYN)/ Z()—/ZSYN _ \7()2
=1 =1

D R D R R
_ - {z Uu(S STe w}

/=1 /=1

qgg is stable but it is not area-specific.
33
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BENCHMARKING

® Usually a reliable direct estimator for an aggregate A of areas
YE’R is available.

® |ndirect estimators of area totals Yy do not necessarily add up
to YDIR

® Ratio adjustment: \N/d indirect estimator of Yy with
> gen Ya # YRR Then, take the estimator

DIR DIR
Vi=VYal—=)> Yi=
d deA
deA

34
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SSD ESTIMATORS

TARGET INDICATORS:

® Additive parameters.

DATA REQUIREMENTS:

® Same as required for the considered direct and the synthetic
ones.

35
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SSD ESTIMATORS

ADVANTAGES:

® They cannot have worse design-variance than the direct
estimator or worse bias of the synthetic one.

DISADVANTAGES:

¢ |f the domain sample size (even if small) is not smaller than
the expected sample size, it does not borrow strength.

® The weight of the synthetic estimator does not depend on
how well the auxiliary variables explain the variability of the
target one.

® They cannot be computed for non-sampled domains.

® Stable and area-specific design MSE estimators are not
available.

® Benchmarking adjustment is required.

36
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(i) Linking model:
dg =%xy8+uy, d=1,...,D
Ug i (0,62), &2 unknown
(ii) Sampling model:
§PIR _ 5yt ey d=1....D
ed " (0,1a), g = Vi (55"R|64) known Vd
ug and ey indep.
(iii) Combined model: Linear mixed model

S?’R:xg,@—kud—ked, d=1,...,D

v’ Fay & Herriot (1979), JASA

000000000000 00

37
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BLUP UNDER FAY-HERRIOT MODEL

Best linear unbiased predictor (BLUP)

Under the combined model (iii) with 4 = x;3 + ug, the linear
estimator 04 = a10P'R + - -+ 4+ apoB/R that solves the problem:

MiN(ay,...ap) MSE(6a) = E(3q — 64)?

s.t. E((5d = 6d) =0
is given by y 5
3P =, +
where
D -1 p
5= (o2 - (z »ydxdx:,> 3 a0,
d=1 d=1
~ ~ ( 2) (8DIR X/ B) 0'5
Uy = ig(o?) = = , - _—u
d d\0y Yd\0q4 d Vd U%’erd

29
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BLUP UNDER FAY-HERRIOT MODEL

Proof: We prove a more general result. Let us express model (iii)
in matrix notation

y=XB8+u+te,
where
SP’R x} un e
y= , X= , U= , €=
SBIR X/D up ep

Covariance matrices: V(u) = o2lp, V(e) = diag(¢q).
We prove that the BLUP of a mixed effect

p=2p+mu,
for given p x 1 and D x 1 vectors £ and m, is
p=08+wmi, i=(i,..., dp).
39
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BLUP UNDER FAY-HERRIOT MODEL

e Linear predictor of = £'3 + m'u:
fi=a'y + b,

for a given vector @ = (o, ...,ap)’ and scalar b.
® Prediction error:

fi—p = a'y+b—€'B—m'u = a'XB+a'u+a’e+b—€'B—m'u.

¢ ji model-unbiased for u iif E(fi — p) = 0.
® Taking expected value of the prediction error,

E(fi—p)=(aX-0)8+b=0VB&/X=1¢, b=0.
® If ji is unbiased for y, then
MSE(ji) = V(ji—u) = V(e/y—m'u) = &'Va+o2m'm—202a/m,
where V = V(y) = 02lp + diag(vq).
40
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BLUP UNDER FAY-HERRIOT MODEL

® Minimization problem:

ming MSE(ji) = &/'Va + 02m'm — 202a/m
st.  oaX=/¢
® Solve by Lagrange multiplier method, to obtain:

o =£(X'VIX)IX'V 4oZm'V T [Ip — X(X'VTIX) T IXV
® Then, the BLUP of u is
PP = o'y =08 + m'olV Ty — XB) = €8 + m'ii.
R e —

u

® For £ = x4 and m = (0/,_,,1,0),_,)’, we obtain

FELUP _ !+ iy

41
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GOOD PROPERTY OF THE BLUP

® BLUP can be expressed as

2
Oy

SELUP =7d 55”? +(1- ’yd)XQB, Vd = 2+ oy
u

® Weighted combination of direct estimator 35’”? and
“regression synthetic” estimator x,3.

® |t gives more weight to SE'R

oD reliable).

when sampling variance ¥4
small (

® |t gives more weight to the synthetic estimator xQ,@ when

Yy large (DR 2 small (x,3 reliable).

unreliable) or o4

42
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EMPIRICAL BLUP (EBLUP)

° SELUP depends on unknown &2 through B and ~g4:

SBLUP _ $BLUP; 2
g = 0g (Uu)

® Empirical BLUP (EBLUP) of d4: 62 estimator of o2,
FEBLUP = §BLUP(52), d=1,....D
® The EBLUP remains model-unbiased provided:

v 6y even: Gi(y) = G5(-y);
v &2 translation invariant: 62(y + Xv) = 6%(y) for all y and .

43
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FITTING METHODS

v" FH fitting method,;
v Maximum Likelihood (ML);
V" Restricted/Residual ML (REML);

v Prasad-Rao moments method.

44
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FH FITTING METHOD

® |t holds that

o, {397~ x,flch)}

B9R T N(xB, 02 +1ba) = > 2
d=1

~ X
02 + 1 b=p

* Fay-Herriot fitting method: Solve iteratively for o2 the
moment equation

2
o (95" — x,3(02)
h(ai):z(" s ) o,

d=1

2

Stop when iterations converge to a solution &

Take 62 = max(52,0) and 8 = B(62).

Normality is not needed.

45
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OTHER FITTING METHODS

* Maximum likelihood: Assumes normality
62" % N(xyB, 0%+ 10a)

ML estimators remain consistent without normality.
¢ Restricted maximum likelihood (REML): Reduces the bias
of ML estimators for small sample size n compared to p.

® Prasad-Rao method: Based on method of moments.
Provides good starting values for iterative fitting algorithms.
(v' Prasad and Rao, 1990)
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MEAN SQUARED ERROR

® Under normality of uy and eg, as D — oo,
MSE(65°"F) = g14(07) + &2d(07) + g3a(07) + o(D7Y),
where

g1d(02) = vaba = O(1),

D -1

24(07) = (1—7a)°xy (Z 7dxdx£1> xg = O(D™1),
d=1

g3d(03) = (1—7a)*v40,%V(63) = O(D™?),

e V/(62) asymptotic variance of 62: It depends on the
estimation method used for o2.

v’ Prasad & Rao (1990), JASA 47
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MEAN SQUARED ERROR

Sketch of proof (ML estimation): We have obtained p = ou,
where

o =0QX'V!+o2m'P, P=V1-VvIXQX'V1,
for Q = (X'V1X)~% = (52, 7axa)
Replacing o’ and m’ = (0/,_;,1,0p,_,) in MSE(ji), and noting

that
PVP =P, PX =0p,

we obtain )
MSE(6G""F) = g14(0?2) + g24(07),
where
g1d(03) = atba,
824(02) = (1= 7a)’)5(D_ vaxax}y) x4

d

Ve
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MEAN SQUARED ERROR

e MSE decomposition:

MSE(S?BLUP) _ E(SEBLUP _ 6d)2
_ E(SEBLUP o 5’5LUP 4 SELUP o 5d)2
_ MSE(SELUP) + E(SEBLUP o SELUP)2
+ 2E(858LUP _ SELUP)(SELUP _ 5d)

® If 52 is even and translation invariant, then under normality
E(3EBLUP _ §BLUPY(FBLUP _ 5y — 0,
® Then,
MSE($5BLUP) = MSE(3BLUP)  E(SEBLUP _ §BLUPY2,

v’ Kackar & Harville (1984), JASA 49
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MEAN SQUARED ERROR

® First-order Taylor expansion of 65:UP(62) around o2:

SEBLUP SBLUP aSELUP 2 2
(5d ~ 6d + ﬁ(&u — O'u).
u
® Then,
E SEBLUP o SBLUP 2 o E 865LUP 232
( d d ) ~ 902 (gu Uu)
u

® Replace y = X8 + v in 05-UF = ofy:
SgLUP:EI,B—i-b/V, V:u+eNN(0D7V)‘
Then,
655LUP ob’
Z=d 7 .
do? dos
50
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MEAN SQUARED ERROR

® Then

(5EBLUP 5BLUP) ~ F |:gb/ <3b;> (0,2 _ 0.5)2:| )

® 52 ML estimator of 2.
5) = dlog L(67)/067
around 02, and noting that ds(02)/d02 A —Z(02), where
Z(02) is the Fisher information,

® By first-order Taylor expansion of s(&

64~ oy +I(0g)s(o})

u
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MEAN SQUARED ERROR

® |og-likelihood function:
5 D 1 1 N1
log L(0;) = — = log(2m) — 5 log [V[ = 2 (y =XB)' V™" (y — XB).

® Score function:

s(02) = (V) ~ (y ~ XB)V 3y — XB)

® Fisher information:

® Then calculate the expected value

A N ob’ ob'\’
E(6EBLUP _ §BLUPY2 o F [ 502 w < 803> 12(03)52(05)] .




INTROD. INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BIN
0000000000000000 VOOOOOO00000000000 0O00000000000000e00000 DOOOO00000 000000000000 00

MSE ESTIMATOR

® |t holds

2
u
Elg2a(67)] ~ g24(03),  Elgsa(63)] ~ g3a(o7).
® MSE estimator when &2 is obtained by REML:
mse(55° ") = £14(67) + £24(67) + 2834(67)
® Nearly unbiased:

E |mse(8581U7)| = MSE(355-UP) + (DY)

® When 42 is obtained by FH or ML methods, an extra term
due to bias in 62 must be added.

v’ Prasad & Rao (1990), JASA 53



INTROD. INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BIN
0000000000000000 VOOOOOO000O0000000 0O000000000000000e0000 DOOOO00000 000000000000 00

EBLUP BASED ON FAY-HERRIOT MODEL

TARGET INDICATORS:

® General indicators.

DATA REQUIREMENTS:

® Aggregated values of p auxiliary variables at the domain level.
® Domain population sizes.
54
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EBLUP BASED ON FAY-HERRIOT MODEL

ADVANTAGES:

Requires only area level auxiliary information, which is easily
available and avoids confidentiality issues.

Makes use of the sampling weights when 4 # 0.
Design-consistent as ngy — co. Hence, less affected by
informative sampling.

Automatically gives more weight to the regression estimator
when sample size is too small in a given area.

It often has better efficiency than the direct estimator.

It accounts for unexplained between-area heterogeneity if

Y4 # 0.
55
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EBLUP BASED ON FAY-HERRIOT MODEL

ADVANTAGES:

® |t tends to the direct estimator as the domain sample size
increases (¢4 decreases).

® For linear direct estimators, CLT applies for areas with not so
small sample sizes, so goodness-of-fit minimally ensured.
Isolated outliers have small effect because of averaging.

® Prasad-Rao MSE estimator stable estimator of design MSE
and design-unbiased when averaging over a large number of
areas. For non-sampled domains, the synthetic component can
be used (v4 =0).
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EBLUP BASED ON FAY-HERRIOT MODEL

DISADVANTAGES:

® |nformation loss in the aggregation process of auxiliary
variables.

® Only D (typically << n) observations to fit the model. In our
examples, very mild gains over direct estimators.

® Model checking is required. Potential linearity problems for
non-linear parameters.

® |t requires preliminary estimation of sampling variances 1.
Same small area problem!
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EBLUP BASED ON FAY-HERRIOT MODEL

DISADVANTAGES:

® |If we wish to estimate several indicators defined in terms of
the same target variable, different modelling is required.

® Estimators cannot be disaggregated for subdomains.

e MSE estimator by Prasad-Rao formula correct under the
model with normality (not design-unbiased for design MSE
for a given area).

® Benchmarking adjustment required.
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NESTED-ERROR MODEL

ydj value of target variable for unit j within area d

® 4 random effect of area d

Nested error linear regression model:

ytjjzxijjﬂ+ud+edj7 j=1,...,Ny, d=1,....D

ug B N(0,02), eq X N(0,02)

Model in matrix notation:

y=XB+Zu+e

Marginal expectation and variance:
E(y) =XB. V(y)=0,ZZ +olly

v’ Battese, Harter & Fuller (1988), JASA 59
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BLUP: GENERAL LINEAR MODEL

More general linear model:

® y=1(y1,...,yn) population vector (random)

® |inear model:
E(y)=X8, V(y)=V

® Decomposition into sample and non-sample parts:

- Ys — Xs _ Vs Vg
y‘<yr>’ X‘<xr>’ V‘<v,s v,,)

Linear target parameter:

0 =a'y =agys +ayy:

60
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BLUP: GENERAL LINEAR MODEL

Best linear unbiased predictor (BLUP): V known

The linear predictor 6= a’ys that is solution to the problem:

Mingern MSE(8) = E(§ — §)?

s.t. E(0—0)=0
is given by :
5BLUP — alsys + alryrBLUP7
where

GELUP — X, 3 + V.V (ys — Xs0),

B = XV X)X VLlys

S Sss

v" Royall (1970), Biometrika 61
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BLUP UNDER NESTED ERROR MODEL

e Under the nested-error model, the BLUP of § = Yy is:

f/c;aLUP ZYdJ + ZygLUP :

j€sq jEra
where
yj;jLUP = xﬁ,j,@ + iy, 3 WLS estimator of 3,
fg = Yd(Va — X4B), va = 04/(07 + 02/ nq)-
® When ny/Ng =~ 0,

YPUP ~ oy {}70/ + (Xqg — )_(d)//é} + (1 —v4)X,8

* Weighted average of “survey regression” estimator
V4 + (X4 — X4)'B and regression synthetic estimator X/ ,8
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EMPIRICAL BLUP (EBLUP)

® BLUP depends on unknown 6 = (02, 02)":

SBLUP ::SBLUP(O)

® EBLUP of 4: § = (62,52)' estimator of 6

5EBLUP 5BLUP(0)

® Estimators of 02 and 02:

v" Henderson method Ill (moments method);
v ML;
v" REML.
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EBLUP UNDER A UNIT LEVEL MODEL

TARGET INDICATORS:

® Means or totals of the variable of interest.

DATA REQUIREMENTS:

® Microdata for the p auxiliary variables in the survey.

® Domain indicator in the survey.

® Population means of the p auxiliary variables for the domains.
64
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EBLUP UNDER A UNIT LEVEL MODEL

ADVANTAGES:

It uses unit level auxiliary information, which is typically much
richer than area level information.

Total sample size is typically very large (n >> D), so
borrowing a lot of strength.

It accounts for unexplained between-area heterogeneity.
Model checking is required.
It does not require sampling variances of direct estimators.

It automatically borrows strength when domain sample size is
small and tends to the “survey regression” estimator as the
domain sample size grows.
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EBLUP UNDER A UNIT LEVEL MODEL

ADVANTAGES:

Estimates can be disaggregated for subareas (without sub-area
effect) or even for individuals.

Unbiased estimators under the model (normality not really
needed, only symmetry).
Nearly unbiased MSE estimators under the model with
normality.
Model MSE estimator stable for design-based MSE and
design-unbiased when averaging for many domains.
The synthetic part can be used for non-sampled areas.
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EBLUP UNDER A UNIT LEVEL MODEL

DISADVANTAGES:

Unit level auxiliary information not easily available.

Only applicable to linear parameters.

Does not use sampling weights, so not good design
properties for a given area. Problems under informative
sampling.

It can be affected by outliers and/or lack of normality.
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EBLUP UNDER A UNIT LEVEL MODEL

DISADVANTAGES:

® Sensitive to model departures. Model checking very
important.

® MSE estimator by Prasad-Rao formula correct under the
model with normality (not design-unbiased for design MSE
for a given area).

® Benchmarking adjustment required.
68
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BEST PREDICTOR

Best Predictor (BP)

Consider the target quantity § = h(y), not necessarily linear. The
predictor 0 = g(ys) that minimizes MSE(0) = E(§ — 6)? is

65F = Ey, (dys)-

Proof: Define 6° = E,, (dys). Note that
MSE(0) = Ey{(0 — 6°)*} +2 B, {(6 — 6°)(6° — 6)} + Ey{(6° — 6)°}.
The last term does not depend on 5. For the second term,
EAG -0 o)} = B. |6, {(6 -0 o)y }]
= B[~ {0~ &, (@)} =0
The minimizer of £, {(§ — 6°)?} is exactly 657 = 5% = E, (d]ys). 69
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EMPIRICAL BEST PREDICTOR

® The best predictor is unbiased:
Ey,(3°7) = Ey, {Ey, (6lys)} = Ey(9).

® For a linear model with E(y) = X3 and V(y) = V(0) with 8
and @ unknown, the BP depends on 3 and 6:

SBP — SBP(57 9)
 Empirical Best Predictor (EBP): § estimator of 6. Then
$EBP _ 5EP (53(6), O).
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BEST PREDICTOR: LINEAR PARAMETER

® Particular case: Consider a linear target parameter
0 =a'y = ays +ayy,
If y is normally distributed, then BP is
687 = alys +a§;",

where
yrBP = Xr:B + Vrsvs_sl(YS - XSB)

® |n this case, EBP equals EBLUP.
71
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EB METHOD: POVERTY ESTIMATION

® Domain poverty indicators:
Ny a
1 z — Ey
Foj= EZ (Z) I(Ej<z), d=1,...,D.
j=1
® The distribution of incomes Eg; is highly right skewed.
® Select a transformation T() such that the distribution of
ydj = T(Egj) is approximately Normal.
[

Assumption: yy = T(Eyj) satisfies the nested error model

..d "d
Yaj = XgiB + ug + eqj,  ug ~ N(0,03), eq; ~ N(0,02).
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EB METHOD: POVERTY ESTIMATION

® Area vector: yg = (Yd1,-- -, Yan,) -
® Poverty indicators in terms of yy:

Ny 2 - Ty, )¢
Fad = /\Z; {Tz(ydj)} HT () < 2} = ha(ya)-

® Partition yq into sample and non-sample: yg = (., y%,)
® Best estimator:

'EaBdP = Eydr [Fad|)’ds] .

v’ Molina and Rao (2010), CJS 73
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EB METHOD

e Distribution of yg4, given yg4s under nested-error model:

Ydr|yds ~ N(p‘dr|svvdr|s)7

where

Hdr|is = XarB + 'Vd(yds - )_(Zisﬁ)lNd—nda
Varis = 0a(1 = Ya)Ing—ng I, n, + 02lNg—nys
and
Ya = oglog+02/na)
® The conditional distrib. depends on 8 = (3,02, 02)’.
* Empirical best (EB) estimator: Replace a consistent
estimator 6 of 6
Fad = Fag ().

v’ Molina and Rao (2010), CJS 74
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MONTE CARLO APPROXIMATION

(a) Generate L out-of-sample vectors ygr), ¢=1,...,L from the
(estimated) conditional distribution of yd,]yds

(b) Attach the sample elements to form a population vector
¢ [
yE]) = (YdsJE/,)). = ]-7 vy L.
(c) Calculate the target parameter with each population vector

F(i,) = hao(y (¢ )) £=1,...,L. Then take the average over the
L Monte Carlo generations:

=1y R

(d) MSE estimated by parametric bootstrap.
v' Molina and Rao (2010), CJS 75
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PARAMETRIC BOOTSTRAP MSE

(i) From the fitted model, generate B bootstrap populations
*(b *(b
y*(0) :(yl( ),...,yD( )), b=1,...,B.
(ii) Calculate true bootstrap parameters

50 :h( *(")), b=1,...,B.

(iii) With the sample part y (yigb), ce y*D(sb)) of the
population vector y*(?), compute EB estimators
2EBPx(b) .
04 , b=1,...,B.

(iv) Naive parametric bootstrap MSE estimator:

L 8P )
mse*(éEBP) B Z (5EBP*(b) — 62(1)))
b=1

v’ Gonzalez-Manteiga et al. (2008), JSCS 76
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EB UNDER A UNIT LEVEL MODEL

TARGET INDICATORS:

® General indicators defined in terms of one continuous variable
(e.g. income), which will be modeled.

DATA REQUIREMENTS:

® Microdata for the p auxiliary variables in the survey.
® Domain indicator in the survey.

® Microdata for the p auxiliary variables for all the population
units (census or admin. register).

7
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EB UNDER A UNIT LEVEL MODEL

ADVANTAGES:

It uses unit level auxiliary information, which is typically much
richer than area level information.

Total sample size is typically very large (n >> D), so
borrowing a lot of strength.
It accounts for unexplained between-area heterogeneity.
Applicable to estimate general non-linear parameters h(y),
where y is normally distributed.
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EB UNDER A UNIT LEVEL MODEL

ADVANTAGES:

Full censuses are generated. Then, several indicators can be
obtained at the same time without new modelling and
generation.
Approximately unbiased and optimal estimators under the
model with normality.
The same fitted model can be used to estimate several
indicators.
Estimates can be disaggregated to whatever subdomains
(without subdomain effect), even at the unit level.
Nearly unbiased MSE estimators under the model with
normality.
Model MSE estimator stable for design MSE and
design-unbiased when averaging for many domains.
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EB UNDER A UNIT LEVEL MODEL

DISADVANTAGES:

Unit level auxiliary information for each population unit
(census/register) not easily available.

Computationally intensive.

Does not use sampling weights, so not good design
properties for a given area. Problems under informative
sampling.

Sensitive to model departures. Finding the correct

transformation of variables and model checking very
important. Model checking is crucial.

MSE estimators obtained by bootstrap are computationally
intensive.
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GENERALIZED LINEAR MIXED MODELS

® y4i € {0,1}, where 1=presence of the characteristic of
interest, 0—absence.

® Target parameters: Proportions of individuals with the
characteristic,

® | ogistic mixed model:

ydj|ud ir:\ch. Bern(pdj), j:].,...,Nd, d:].,...,D,
exp(xy;8 + ug)

iid 2
= ,  ug ~ N(0,07).
1+ exp(xyB+ ug)  ° (0.20)

Pdj

v’ Gonzalez-Manteiga et al. (2007), CSDA 81
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SMALL AREA ESTIMATORS

® Best predictor:

ZwaE(yd,yyds , d=1,....D.

JEs4 JEry

® The expectation E(yqj|yds) cannot be calculated analytically:
approximations (e.g. Laplace) or Monte Carlo simulation
methods are required.

® Simple plug-in estimator:

APl AP
Py = ZYdJ+Zde"g , d=1,...,D.

JEsd JErd

J ﬁgjlug = exp(xQJﬂA + dg) /{1 + exp(xﬁﬁ,@l + dq4)} predicted

probabilities through the GLMM fit.
82
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FITTING METHODS

e Sample likelihood:

o) = [ flyeudu= [ ulyslu)fu)d

® No analytical expression for the likelihood.

e ML: Approximations (e.g. Laplace) or numerical methods are
required to maximize the likelihood.
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PENALIZED QUASI-LIKELIHOOD (PQL)
+APPROXIMATE ML

(A) o2 known: PQL algorithm (v Breslow and Clayton, 1993):

(8, 0) = argmaxg ) f(ys, u)
(B) B and u known: approximate ML

62 = argmax,2f;(ys)

fi multivariate normal likelihood of a linear mixed model
approximating the GLMM.

v’ Schall (1991) v Saei and Chambers (2003) 84



INTROD. INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BIN
0000000000000000 0OO0O0OO000000000000 DOOO0O000000000000000000 0000000000 000000000000 00

PENALIZED QUASI-LIKELIHOOD (PQL)
+APPROXIMATE ML

It delivers possibly inconsistent estimators.

MSE can be estimated by parametric bootstrap.
GLMM fitting+EBP+Bootstrap MSE: highly computationally
intensive. Unfeasible for large populations.

GLMM fitting+Plug-in estimator+Bootstrap MSE: more
feasible but not optimal.
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EXTENSION: SEVERAL CATEGORIES

® Y, total unemployed in area d;
® Y, total employed in area d;

® R4 unemployment rate in area d;

Ya1

= —— x 100.
T Yo+ Ya
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MULTINOMIAL LOGISTIC MIXED MODEL

® Three exclusive categories:
ydj1 1=unemployed, O=otherwise
ydj2 1=employed, O=otherwise
ydj3 1=inactive, O=otherwise

® Multivariate model:
(Ydj1s Ydj2, Ydj3) ~ Multin(mg;; paj1, Pdj2, Pdj3)

Unemployed :  log(pdj1/pdj3) = X181 + a1
Employed :  log(pgja/Pdj3) = XyjnB2 + Ud2
e Category-specific random effects: u = (ug1, ug2)’ ~ Na2(0,X,).
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MULTINOMIAL LOGISTIC MIXED MODEL

® Plug-in estimates of unemployed/employed totals:
PI APl
Ug Zydjk +Zpdﬂi}ga = 1a2
JEsy JEIry
® Plug-in estimates of unemployment rates:

YP/Ug
R(I;lug . API— X 100
% ug YPIug
dl d2

v Molina, Saei and Lombardia (2007), JRSSA 88
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MODELS FOR BINARY DATA

TARGET INDICATORS:

® Proportions o totals of a binary variable (e.g. absence of
certain commodity).

DATA REQUIREMENTS:

® Microdata for the p auxiliary variables in the survey.
® Domain indicator in the survey.

® Microdata for the p auxiliary variables for all the population
units (census or admin. register).

89



INTROD.

INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BIl

000000000000 0000 0OOOOO0O0O0OOO0OO00O000 OOOOOOO0O0VO0OO0O0OO0O00O000 OO0OOOO000 000000000000 00

MODELS FOR BINARY DATA

ADVANTAGES:

It uses unit level auxiliary information, which is typically much
richer than area level information.

Total sample size is typically very large (n >> D), so
borrowing a lot of strength.

It accounts for unexplained between-area heterogeneity.
EB approximately unbiased and optimal under the model.

Estimates can be disaggregated to whatever subdomains
(without subdomain effect), even at the unit level.
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MODELS FOR BINARY DATA

ADVANTAGES:

® The synthetic part can be used to estimate in non-sampled
areas.

® E| estimador del ECM bajo el modelo obtenido e.g. por
procedimientos bootstrap es un estimador estable del ECM
bajo el disefio y es insesgado bajo el disefio cuando se
promedia a lo largo de muchas areas.

® Bootstrap MSE estiamtor stable for design MSE and
design-unbiased when averaging for many domains.

91



INTROD.

INDIRECT EST AREA-LEVEL MODEL UNIT-LEVEL MODEL EB METHOD BIl

000000000000 0000 0OOOOO0O0O0OOO0OO00O000 OOOOOOO0O0VO0OO0O0OO0O00O000 OO0OOOO000 000000000000 00

MODELS FOR BINARY DATA

DISADVANTAGES:

Unit level auxiliary information for each population unit
(census/register) not easily available.

e Computationally intensive.
® Does not use sampling weights, so not good design

properties for a given area. Problems under informative
sampling.

Sensitive to model departures. Finding the correct
transformation of variables and model checking very
important. Model checking is crucial.

® EB estimator (unlike plug-in) is computationally intensive.
® MSE estimators obtained by bootstrap are computationally

intensive (even more for EB estimator).
Benchmarking adjustment is required.
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SOFTWARE

The R package sae contains functions:

Direct estimators: direct.
Traditional indirect estimators: pssynt, ssd.
FH model: eblupFH, mseFH.

Spatial FH model: eblupSFH, mseSFH, pbmseSFH,
npbmseSFH.

Spatio-temporal FH model: eblupSTFH, pbmseSTFH.
Nested error model: eblupBHF, pbmseBHF.
EB method: ebBHF, pbmseebBHF.

Data sets and examples.

v Molina and Marhuenda (2015), The R Journal 93
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(a)
(b)

(c)
(d)

Preventive measures (design issues) may reduce the need for
indirect estimates significantly.

Good auxiliary information related to variables of interest
plays vital role in model-based estimation. Expanded access to
auxiliary information through coordination and cooperation
among different institutions needed.

Model validation crucial. External evaluation studies are also
needed.

Area-level models have wider scope than unit level models
because area-level auxiliary information more readily available.
But assumption of known sampling variances is restrictive.
More work on getting good approximations to sampling
variances is needed. Unit level models can gain much more
efficiency if unit level information is available.
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